Characterization and toxicity of nanoscale fragments in wastewater treatment plant effluent

Characterization and toxicity of nanoscale fragments in wastewater treatment plant effluent Much attention has been paid to extracting and isolating specific and well-known nanoparticles (especially for engineered nanomaterials) from complex environmental matrices. However, such research may not provide global information on actual contamination because nanoscale fragments exist as mixtures of various elements and matrices in the real environment. The present work first isolated and characterized nanoscale fragments in effluents from municipal wastewater treatment plants (WWTPs). The nanoscale fragments were found to be composed of 70–85% carbon and low amounts of oxygen, heavy metals and other elements and exhibited nanosheet topographies (approximately 0.87–1.31 nm thickness and 68–187 nm lateral length). Because the isolated nanoscale fragments were mixtures rather than one specific type of nanoparticle, they were present at high concentrations ranging from 0.07 to 0.55 mg/L. It was also found that the accumulation of nanoscale fragments in rice reached 0.59 mg/g under exposure to environmentally relevant concentrations, leading to marked phytotoxicity (e.g., ultrastructural damage to chloroplasts and mitochondria). Metabolic analysis revealed the toxicological mechanisms to be related to disorders of carbohydrate, amino acid and fatty acid metabolism. This study is the first to characterize the properties and analyze the toxicity of nanoscale fragments in the effluents of WWTPs. Given that WWTP effluents containing nanoscale fragments are continuously discharged to the soil, surface water and seas, nanoscale fragment materials deserve considerable attention in future work compared with the few widely studied engineered nanoparticles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Failure Analysis Elsevier

Characterization and toxicity of nanoscale fragments in wastewater treatment plant effluent

Loading next page...
 
/lp/elsevier/characterization-and-toxicity-of-nanoscale-fragments-in-wastewater-EmCDosGwXN
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
1350-6307
eISSN
1873-1961
D.O.I.
10.1016/j.scitotenv.2018.01.180
Publisher site
See Article on Publisher Site

Abstract

Much attention has been paid to extracting and isolating specific and well-known nanoparticles (especially for engineered nanomaterials) from complex environmental matrices. However, such research may not provide global information on actual contamination because nanoscale fragments exist as mixtures of various elements and matrices in the real environment. The present work first isolated and characterized nanoscale fragments in effluents from municipal wastewater treatment plants (WWTPs). The nanoscale fragments were found to be composed of 70–85% carbon and low amounts of oxygen, heavy metals and other elements and exhibited nanosheet topographies (approximately 0.87–1.31 nm thickness and 68–187 nm lateral length). Because the isolated nanoscale fragments were mixtures rather than one specific type of nanoparticle, they were present at high concentrations ranging from 0.07 to 0.55 mg/L. It was also found that the accumulation of nanoscale fragments in rice reached 0.59 mg/g under exposure to environmentally relevant concentrations, leading to marked phytotoxicity (e.g., ultrastructural damage to chloroplasts and mitochondria). Metabolic analysis revealed the toxicological mechanisms to be related to disorders of carbohydrate, amino acid and fatty acid metabolism. This study is the first to characterize the properties and analyze the toxicity of nanoscale fragments in the effluents of WWTPs. Given that WWTP effluents containing nanoscale fragments are continuously discharged to the soil, surface water and seas, nanoscale fragment materials deserve considerable attention in future work compared with the few widely studied engineered nanoparticles.

Journal

Engineering Failure AnalysisElsevier

Published: Sep 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off