Cellulosic biobutanol by Clostridia: Challenges and improvements

Cellulosic biobutanol by Clostridia: Challenges and improvements The gradual shift of transportation fuels from oil based fuels to alternative fuel resources and worldwide demand for energy has been the impetus for research to produce alcohol biofuels from renewable resources which focus on utilizing simple sugars from lignocellulosic biomass, the largest known renewable carbohydrate source as an alternative. Currently, the usage of bioethanol and biodiesel do not cover an increasing demand for biofuels. Hence, there is an extensive need for advanced biofuels with superior fuel properties. Biobutanol is regarded to be an excellent biofuel compared to bioethanol in terms of energy density and hygroscopicity, could be produced through acetone-butanol-ethanol (ABE) fermentation process. Even though the ABE fermentation is one of the oldest large-scale fermentation processes, biobutanol yield by anaerobic fermentation remains sub-optimal. For sustainable industrial scale of biobutanol production, a number of obstacles need to be addressed including choice of feedstock, low product yield, product toxicity to strain, multiple end-products and downstream processing of alcohol mixtures plus the metabolic engineering for improvement of fermentation process and products. Studies on the kinetic and physiological models for fermentation using lignocellulosic biomass provide useful information for process optimization. Simultaneous saccharification and fermentation (SSF) with in-situ product removal techniques have been developed to improve production economics due to the lower biobutanol yield in the fermentation broth. The present review is attempting to provide an overall outlook on the discoveries and strategies that are being developed for biobutanol production from lignocellulosic biomass. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable and Sustainable Energy Reviews Elsevier

Cellulosic biobutanol by Clostridia: Challenges and improvements

Loading next page...
 
/lp/elsevier/cellulosic-biobutanol-by-clostridia-challenges-and-improvements-1hXmcQ7ebX
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
1364-0321
D.O.I.
10.1016/j.rser.2017.05.184
Publisher site
See Article on Publisher Site

Abstract

The gradual shift of transportation fuels from oil based fuels to alternative fuel resources and worldwide demand for energy has been the impetus for research to produce alcohol biofuels from renewable resources which focus on utilizing simple sugars from lignocellulosic biomass, the largest known renewable carbohydrate source as an alternative. Currently, the usage of bioethanol and biodiesel do not cover an increasing demand for biofuels. Hence, there is an extensive need for advanced biofuels with superior fuel properties. Biobutanol is regarded to be an excellent biofuel compared to bioethanol in terms of energy density and hygroscopicity, could be produced through acetone-butanol-ethanol (ABE) fermentation process. Even though the ABE fermentation is one of the oldest large-scale fermentation processes, biobutanol yield by anaerobic fermentation remains sub-optimal. For sustainable industrial scale of biobutanol production, a number of obstacles need to be addressed including choice of feedstock, low product yield, product toxicity to strain, multiple end-products and downstream processing of alcohol mixtures plus the metabolic engineering for improvement of fermentation process and products. Studies on the kinetic and physiological models for fermentation using lignocellulosic biomass provide useful information for process optimization. Simultaneous saccharification and fermentation (SSF) with in-situ product removal techniques have been developed to improve production economics due to the lower biobutanol yield in the fermentation broth. The present review is attempting to provide an overall outlook on the discoveries and strategies that are being developed for biobutanol production from lignocellulosic biomass.

Journal

Renewable and Sustainable Energy ReviewsElsevier

Published: Nov 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off