Carbon/carbon nanocomposites as counter electrodes for platinum free dye-sensitized solar cells

Carbon/carbon nanocomposites as counter electrodes for platinum free dye-sensitized solar cells In this work, carbonaceous materials and their combinations with each other were used as counter electrodes for efficient dye-sensitized solar cells (DSSCs). A small amount of TiO2 paste was also incorporated in each electrocatalyst to increase the adhesion between the carbon material and the conductive glass substrate. The dispersion of carbonaceous materials in composite films was characterized by transmission electron microscopy (TEM). Electrocatalytic characteristics of carbon/carbon catalysts are systematically investigated by electrochemical techniques, such as cyclic voltammetry and chronoamperometry. Solar cells assembled with carbon/carbon composite counter electrodes were characterized by photocurrent–voltage characteristic and electrochemical impedance spectroscopy measurements. The results indicate that under optimal conditions, the solar cell assembled with carbon/carbon composite counter electrode containing activated carbon, multi-walled carbon nanotube and graphene, shows power conversion efficiency of 10.73%. This photovoltaic performance is comparable with 11.20% for the platinum-based dye-sensitized solar cell. The results exhibit that carbonaceous material is an encouraging alternative for low-cost DSSCs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Organic Electronics Elsevier

Carbon/carbon nanocomposites as counter electrodes for platinum free dye-sensitized solar cells

Loading next page...
 
/lp/elsevier/carbon-carbon-nanocomposites-as-counter-electrodes-for-platinum-free-7NTrW1fa95
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
1566-1199
D.O.I.
10.1016/j.orgel.2016.05.014
Publisher site
See Article on Publisher Site

Abstract

In this work, carbonaceous materials and their combinations with each other were used as counter electrodes for efficient dye-sensitized solar cells (DSSCs). A small amount of TiO2 paste was also incorporated in each electrocatalyst to increase the adhesion between the carbon material and the conductive glass substrate. The dispersion of carbonaceous materials in composite films was characterized by transmission electron microscopy (TEM). Electrocatalytic characteristics of carbon/carbon catalysts are systematically investigated by electrochemical techniques, such as cyclic voltammetry and chronoamperometry. Solar cells assembled with carbon/carbon composite counter electrodes were characterized by photocurrent–voltage characteristic and electrochemical impedance spectroscopy measurements. The results indicate that under optimal conditions, the solar cell assembled with carbon/carbon composite counter electrode containing activated carbon, multi-walled carbon nanotube and graphene, shows power conversion efficiency of 10.73%. This photovoltaic performance is comparable with 11.20% for the platinum-based dye-sensitized solar cell. The results exhibit that carbonaceous material is an encouraging alternative for low-cost DSSCs.

Journal

Organic ElectronicsElsevier

Published: Aug 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial