Can single classifiers be as useful as model ensembles to produce benthic seabed substratum maps?

Can single classifiers be as useful as model ensembles to produce benthic seabed substratum maps? Numerous machine-learning classifiers are available for benthic habitat map production, which can lead to different results. This study highlights the performance of the Random Forest (RF) classifier, which was significantly better than Classification Trees (CT), Naïve Bayes (NB), and a multi-model ensemble in terms of overall accuracy, Balanced Error Rate (BER), Kappa, and area under the curve (AUC) values. RF accuracy was often higher than 90% for each substratum class, even at the most detailed level of the substratum classification and AUC values also indicated excellent performance (0.8–1). Total agreement between classifiers was high at the broadest level of classification (75–80%) when differentiating between hard and soft substratum. However, this sharply declined as the number of substratum categories increased (19–45%) including a mix of rock, gravel, pebbles, and sand. The model ensemble, produced from the results of all three classifiers by majority voting, did not show any increase in predictive performance when compared to the single RF classifier. This study shows how a single classifier may be sufficient to produce benthic seabed maps and model ensembles of multiple classifiers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Estuarine Coastal and Shelf Science Elsevier

Can single classifiers be as useful as model ensembles to produce benthic seabed substratum maps?

Loading next page...
 
/lp/elsevier/can-single-classifiers-be-as-useful-as-model-ensembles-to-produce-GuVLTQq24G
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0272-7714
eISSN
1096-0015
D.O.I.
10.1016/j.ecss.2018.02.028
Publisher site
See Article on Publisher Site

Abstract

Numerous machine-learning classifiers are available for benthic habitat map production, which can lead to different results. This study highlights the performance of the Random Forest (RF) classifier, which was significantly better than Classification Trees (CT), Naïve Bayes (NB), and a multi-model ensemble in terms of overall accuracy, Balanced Error Rate (BER), Kappa, and area under the curve (AUC) values. RF accuracy was often higher than 90% for each substratum class, even at the most detailed level of the substratum classification and AUC values also indicated excellent performance (0.8–1). Total agreement between classifiers was high at the broadest level of classification (75–80%) when differentiating between hard and soft substratum. However, this sharply declined as the number of substratum categories increased (19–45%) including a mix of rock, gravel, pebbles, and sand. The model ensemble, produced from the results of all three classifiers by majority voting, did not show any increase in predictive performance when compared to the single RF classifier. This study shows how a single classifier may be sufficient to produce benthic seabed maps and model ensembles of multiple classifiers.

Journal

Estuarine Coastal and Shelf ScienceElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial