Calcium ion- and rhamnolipid-mediated deposition of soluble matters on biocarriers

Calcium ion- and rhamnolipid-mediated deposition of soluble matters on biocarriers Start-up of biofilm process initiated by the deposition of soluble matters on biocarriers is a very important yet time-consuming procedure. However, rapid start-up methods especially in the enhancement of soluble matters deposition have been rarely addressed. In this study, a quartz crystal microbalance with dissipation monitoring (QCM-D) was applied to investigate the influences of calcium ion and rhamnolipid (RL) on the deposition of soluble matters from real and synthetic industrial wastewaters with different configurations of organics (bovine serum albumin and sodium alginate) and ionic strength on the model biocarriers polystyrene and polyamide. Results showed that deposition was effectively promoted by the addition of Ca2+ and along with the increase in Ca2+ content. However, RL enhanced the deposition effectively only in hyperhaline wastewater through breaking hydration repulsion and decreased the deposition in low-salinity wastewater, and its influence to the deposited layer property exhibited characteristics of negative feedback. The combined use of Ca2+ and RL had a better enhancement effect than that of separate use and the mechanism involved can not be soundly explained only by Derjaguin−Landau−Verwey−Overbeek (DLVO) theory. The strategy of mediating the deposition of soluble matters on different biocarriers by adding Ca2+ and RL has important implications for regulating biofilm formation to accelerate the start-up process in attached-growth bioreactors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Research Elsevier

Calcium ion- and rhamnolipid-mediated deposition of soluble matters on biocarriers

Loading next page...
 
/lp/elsevier/calcium-ion-and-rhamnolipid-mediated-deposition-of-soluble-matters-on-vjO5HYWCEA
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0043-1354
D.O.I.
10.1016/j.watres.2018.01.010
Publisher site
See Article on Publisher Site

Abstract

Start-up of biofilm process initiated by the deposition of soluble matters on biocarriers is a very important yet time-consuming procedure. However, rapid start-up methods especially in the enhancement of soluble matters deposition have been rarely addressed. In this study, a quartz crystal microbalance with dissipation monitoring (QCM-D) was applied to investigate the influences of calcium ion and rhamnolipid (RL) on the deposition of soluble matters from real and synthetic industrial wastewaters with different configurations of organics (bovine serum albumin and sodium alginate) and ionic strength on the model biocarriers polystyrene and polyamide. Results showed that deposition was effectively promoted by the addition of Ca2+ and along with the increase in Ca2+ content. However, RL enhanced the deposition effectively only in hyperhaline wastewater through breaking hydration repulsion and decreased the deposition in low-salinity wastewater, and its influence to the deposited layer property exhibited characteristics of negative feedback. The combined use of Ca2+ and RL had a better enhancement effect than that of separate use and the mechanism involved can not be soundly explained only by Derjaguin−Landau−Verwey−Overbeek (DLVO) theory. The strategy of mediating the deposition of soluble matters on different biocarriers by adding Ca2+ and RL has important implications for regulating biofilm formation to accelerate the start-up process in attached-growth bioreactors.

Journal

Water ResearchElsevier

Published: Apr 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off