Calcium-induced mitochondrial swelling and cytochrome c release in the brain: its biochemical characteristics and implication in ischemic neuronal injury

Calcium-induced mitochondrial swelling and cytochrome c release in the brain: its biochemical... The objective of the present study was to determine the biochemical characteristics of Ca 2+ -induced mitochondrial swelling (mitochondrial permeability transition; mPT) and cytochrome c release in the brain, and to clarify its role in neuronal injury following transient forebrain ischemia. Mitochondria were isolated from rat brain and liver. Changes in mitochondrial volume were measured via light absorbance at 540 nm. Using Western blot analysis, we examined the in vitro release of mitochondrial cytochrome c under these conditions. Transient forebrain ischemia was induced by 5 min occlusion of the common carotid arteries in the gerbil. Cyclosporin A (CsA), a specific mPT blocker, and/or trifluoperazine, a blocker of phospholipase A 2 , were given before and 24 h after ischemia. The number of surviving neurons in the hippocampal CA1 sector was counted 7 days after ischemia. Calcium induced a moderate decrease of light absorbance in brain mitochondria, which was inhibited by CsA. However, calcium induced a much larger decrease of light absorbance in liver mitochondria. Calcium induced a moderate release of cytochrome c from brain mitochondria, which was not inhibited by CsA. However, calcium induced the release of a larger amount of cytochrome c from liver mitochondria. Selective neuronal injury due to transient forebrain ischemia was significantly ameliorated by treatment with high-dose CsA. The biochemical properties of Ca 2+ -induced mitochondrial swelling in the brain are different from those in the liver. Cytochrome c is released from brain mitochondria through an mPT-independent mechanism. CsA potentially ameliorates delayed neuronal injury in the hippocampus due to transient forebrain ischemia. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Research Elsevier

Calcium-induced mitochondrial swelling and cytochrome c release in the brain: its biochemical characteristics and implication in ischemic neuronal injury

Loading next page...
 
/lp/elsevier/calcium-induced-mitochondrial-swelling-and-cytochrome-c-release-in-the-hw0HuzyYhe
Publisher
Elsevier
Copyright
Copyright © 2002 Elsevier Science B.V.
ISSN
0006-8993
D.O.I.
10.1016/S0006-8993(02)03767-8
Publisher site
See Article on Publisher Site

Abstract

The objective of the present study was to determine the biochemical characteristics of Ca 2+ -induced mitochondrial swelling (mitochondrial permeability transition; mPT) and cytochrome c release in the brain, and to clarify its role in neuronal injury following transient forebrain ischemia. Mitochondria were isolated from rat brain and liver. Changes in mitochondrial volume were measured via light absorbance at 540 nm. Using Western blot analysis, we examined the in vitro release of mitochondrial cytochrome c under these conditions. Transient forebrain ischemia was induced by 5 min occlusion of the common carotid arteries in the gerbil. Cyclosporin A (CsA), a specific mPT blocker, and/or trifluoperazine, a blocker of phospholipase A 2 , were given before and 24 h after ischemia. The number of surviving neurons in the hippocampal CA1 sector was counted 7 days after ischemia. Calcium induced a moderate decrease of light absorbance in brain mitochondria, which was inhibited by CsA. However, calcium induced a much larger decrease of light absorbance in liver mitochondria. Calcium induced a moderate release of cytochrome c from brain mitochondria, which was not inhibited by CsA. However, calcium induced the release of a larger amount of cytochrome c from liver mitochondria. Selective neuronal injury due to transient forebrain ischemia was significantly ameliorated by treatment with high-dose CsA. The biochemical properties of Ca 2+ -induced mitochondrial swelling in the brain are different from those in the liver. Cytochrome c is released from brain mitochondria through an mPT-independent mechanism. CsA potentially ameliorates delayed neuronal injury in the hippocampus due to transient forebrain ischemia.

Journal

Brain ResearchElsevier

Published: Jan 17, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off