Cadmium accumulation in edible flowering cabbages in the Pearl River Delta, China: Critical soil factors and enrichment models

Cadmium accumulation in edible flowering cabbages in the Pearl River Delta, China: Critical soil... Although many previous studies have reported the soil pH and organic matter to be the most critical factors that affect the transfer of Cd in soil-crop systems in temperate zones, the behavior of Cd transfer is different in the Pearl River Delta (PRD), which is located in a subtropical zone with different climate and soil conditions. Therefore, we must determine the critical environmental factors that influence the transfer of Cd in the soil-vegetable system in the PRD region. Such knowledge can improve the safety of vegetables. In this study, the soil geochemical properties are investigated to explore the key soil factors that control the uptake of Cd by flowering cabbage, a popular leaf vegetable in China, from soils in the PRD region. The Cd contents in vegetables were most positively correlated to soil oxalate-Cd (p < 0.01), which indicates that amorphous Cd is the most available form for uptake into the cabbages. With the characteristics of rich in Fe oxide and Al oxide in the PRD soils, soil Fe and Al oxides were found to be the most relevant to the transfer factors of Cd from the soils to the cabbages. Soil secondary minerals are the key factor that affects the transfer of Cd, thereby influencing the migration and fate of Cd in soil-cabbage systems, with DCB-Fe significantly decreasing the Cd accumulation in cabbages. Additionally, models were developed to predict the enrichment of Cd in flowering cabbages, in which oxalate-Cd, DCB-Fe, and NaOAc-Al in soils were determined to be the most important factors that affect the Cd enrichment in flowering cabbages. In this study, we determine the important role of soil secondary minerals in affecting the transfer of Cd in soil-cabbage systems in the PRD. These observations are important to evaluate the accumulation of Cd in vegetables in subtropical zones. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Cadmium accumulation in edible flowering cabbages in the Pearl River Delta, China: Critical soil factors and enrichment models

Loading next page...
 
/lp/elsevier/cadmium-accumulation-in-edible-flowering-cabbages-in-the-pearl-river-quZNOdzsCF
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.08.092
Publisher site
See Article on Publisher Site

Abstract

Although many previous studies have reported the soil pH and organic matter to be the most critical factors that affect the transfer of Cd in soil-crop systems in temperate zones, the behavior of Cd transfer is different in the Pearl River Delta (PRD), which is located in a subtropical zone with different climate and soil conditions. Therefore, we must determine the critical environmental factors that influence the transfer of Cd in the soil-vegetable system in the PRD region. Such knowledge can improve the safety of vegetables. In this study, the soil geochemical properties are investigated to explore the key soil factors that control the uptake of Cd by flowering cabbage, a popular leaf vegetable in China, from soils in the PRD region. The Cd contents in vegetables were most positively correlated to soil oxalate-Cd (p < 0.01), which indicates that amorphous Cd is the most available form for uptake into the cabbages. With the characteristics of rich in Fe oxide and Al oxide in the PRD soils, soil Fe and Al oxides were found to be the most relevant to the transfer factors of Cd from the soils to the cabbages. Soil secondary minerals are the key factor that affects the transfer of Cd, thereby influencing the migration and fate of Cd in soil-cabbage systems, with DCB-Fe significantly decreasing the Cd accumulation in cabbages. Additionally, models were developed to predict the enrichment of Cd in flowering cabbages, in which oxalate-Cd, DCB-Fe, and NaOAc-Al in soils were determined to be the most important factors that affect the Cd enrichment in flowering cabbages. In this study, we determine the important role of soil secondary minerals in affecting the transfer of Cd in soil-cabbage systems in the PRD. These observations are important to evaluate the accumulation of Cd in vegetables in subtropical zones.

Journal

Environmental PollutionElsevier

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off