Building occupancy detection through sensor belief networks

Building occupancy detection through sensor belief networks Currently it is difficult to determine when and where people occupy a commercial building. Part of the difficulty arises from shortcomings in available sensor technology, but an even greater deficiency is the lack of analysis methods appropriate to the determination of occupancy. This paper describes a pilot study describing new sensing and data analysis techniques, applied to the determination of space occupancy. The central premise of the paper is that improved building operation with respect to energy management, security, and indoor environmental quality will be possible with better detection of building occupancy resolved in space and time. We developed and deployed a network of passive infrared occupancy sensors in two private offices, and applied analysis tools based on Bayesian probability theory to determine occupancy. Specifically, a class of graphical probability models, called belief networks, was applied to the occupancy data generated by the sensor network. The inference of primary importance is a probability distribution over the number of occupants and their locations in a building, given past and present sensor measurements. Inferences were computed for occupancy and its temporal persistence in individual offices as well as the persistence of sensor status. The raw sensor data were also used to calibrate the sensor belief network, including the occupancy transition matrix used in the Markov model, sensor sensitivity, and sensor failure models. This study shows that the belief network framework can be applied to the analysis of data streams from sensor networks, offering significant benefits to building operation compared to current practice. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Energy and Buildings Elsevier

Building occupancy detection through sensor belief networks

Loading next page...
 
/lp/elsevier/building-occupancy-detection-through-sensor-belief-networks-Iowwfh3gYZ
Publisher
Elsevier
Copyright
Copyright © 2006 Elsevier B.V.
ISSN
0378-7788
eISSN
1872-6178
D.O.I.
10.1016/j.enbuild.2005.12.001
Publisher site
See Article on Publisher Site

Abstract

Currently it is difficult to determine when and where people occupy a commercial building. Part of the difficulty arises from shortcomings in available sensor technology, but an even greater deficiency is the lack of analysis methods appropriate to the determination of occupancy. This paper describes a pilot study describing new sensing and data analysis techniques, applied to the determination of space occupancy. The central premise of the paper is that improved building operation with respect to energy management, security, and indoor environmental quality will be possible with better detection of building occupancy resolved in space and time. We developed and deployed a network of passive infrared occupancy sensors in two private offices, and applied analysis tools based on Bayesian probability theory to determine occupancy. Specifically, a class of graphical probability models, called belief networks, was applied to the occupancy data generated by the sensor network. The inference of primary importance is a probability distribution over the number of occupants and their locations in a building, given past and present sensor measurements. Inferences were computed for occupancy and its temporal persistence in individual offices as well as the persistence of sensor status. The raw sensor data were also used to calibrate the sensor belief network, including the occupancy transition matrix used in the Markov model, sensor sensitivity, and sensor failure models. This study shows that the belief network framework can be applied to the analysis of data streams from sensor networks, offering significant benefits to building operation compared to current practice.

Journal

Energy and BuildingsElsevier

Published: Sep 1, 2006

References

  • Probability Theory: The Logic of Science
    Jaynes, E.T.
  • Bayesian Data Analysis
    Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off