Brain state flexibility accompanies motor-skill acquisition

Brain state flexibility accompanies motor-skill acquisition Learning requires the traversal of inherently distinct cognitive states to produce behavioral adaptation. Yet, tools to explicitly measure these states with non-invasive imaging – and to assess their dynamics during learning – remain limited. Here, we describe an approach based on a distinct application of graph theory in which points in time are represented by network nodes, and similarities in brain states between two different time points are represented as network edges. We use a graph-based clustering technique to identify clusters of time points representing canonical brain states, and to assess the manner in which the brain moves from one state to another as learning progresses. We observe the presence of two primary states characterized by either high activation in sensorimotor cortex or high activation in a frontal-subcortical system. Flexible switching among these primary states and other less common states becomes more frequent as learning progresses, and is inversely correlated with individual differences in learning rate. These results are consistent with the notion that the development of automaticity is associated with a greater freedom to use cognitive resources for other processes. Taken together, our work offers new insights into the constrained, low dimensional nature of brain dynamics characteristic of early learning, which give way to less constrained, high-dimensional dynamics in later learning. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroimage Elsevier

Loading next page...
 
/lp/elsevier/brain-state-flexibility-accompanies-motor-skill-acquisition-COGJyHjQjE
Publisher
Elsevier
Copyright
Copyright © 2018 The Author(s)
ISSN
1053-8119
eISSN
1095-9572
D.O.I.
10.1016/j.neuroimage.2017.12.093
Publisher site
See Article on Publisher Site

Abstract

Learning requires the traversal of inherently distinct cognitive states to produce behavioral adaptation. Yet, tools to explicitly measure these states with non-invasive imaging – and to assess their dynamics during learning – remain limited. Here, we describe an approach based on a distinct application of graph theory in which points in time are represented by network nodes, and similarities in brain states between two different time points are represented as network edges. We use a graph-based clustering technique to identify clusters of time points representing canonical brain states, and to assess the manner in which the brain moves from one state to another as learning progresses. We observe the presence of two primary states characterized by either high activation in sensorimotor cortex or high activation in a frontal-subcortical system. Flexible switching among these primary states and other less common states becomes more frequent as learning progresses, and is inversely correlated with individual differences in learning rate. These results are consistent with the notion that the development of automaticity is associated with a greater freedom to use cognitive resources for other processes. Taken together, our work offers new insights into the constrained, low dimensional nature of brain dynamics characteristic of early learning, which give way to less constrained, high-dimensional dynamics in later learning.

Journal

NeuroimageElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off