Biomass-dependent seagrass resilience to sediment eutrophication

Biomass-dependent seagrass resilience to sediment eutrophication Seagrass beds provide a wealth of ecosystem services that benefit society (e.g., habitat and feeding ground for juvenile fisheries species), but the Anthropocene has seen to a global decline of these productive habitats. Many temperate estuaries are becoming eutrophic due to horticultural, agricultural, and urban nutrient run off, but the role of this enrichment in seagrass decline is not fully understood. In a multi-site manipulative field experiment (Tauranga Harbour, New Zealand; 37°S, 176°E), we elevated pore water nitrogen (N) concentrations (mimicking the consequences of long-term eutrophication) to examine effects on seagrass meadows. At six intertidal seagrass sites with differing sediment properties and macrofaunal communities, slow release urea fertiliser (200 g N m−2) was buried in 1 m2 plots at the start of the peak growing season (early summer). After 60 d, we measured several seagrass morphological variables (cover, leaf length and width, and above and below ground biomass), sediment properties, and macrofauna community structure. Results demonstrate that the resilience of seagrass meadows to N enrichment is highly site-dependent. Two of the six sites showed significant declines in a multivariate indicator of seagrass morphology, driven by marked reductions in seagrass cover and leaf length (of up to 78%). Whereas, other sites appeared resilient to N enrichment. It was expected that these site-specific responses would be correlated with changes in sediment properties that alter nutrient processing capacity (permeability and biogeochemistry). However, site-specific responses were instead correlated with the ambient seagrass biomass and macrofaunal diversity. Sites with low ambient seagrass biomass and macrofaunal diversity were less resilient to enrichment. These results highlight that seagrass biomass could be a good indicator of resilience to nutrient enrichment, and the biomass where resilience is lost may lie between 140 and 285 g DW m−2. This study contributes knowledge that is required for predicting and mitigating future impacts of estuarine eutrophication on seagrass ecosystems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Experimental Marine Biology and Ecology Elsevier

Loading next page...
 
/lp/elsevier/biomass-dependent-seagrass-resilience-to-sediment-eutrophication-ST5QGEcOsJ
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0022-0981
eISSN
1879-1697
D.O.I.
10.1016/j.jembe.2018.01.002
Publisher site
See Article on Publisher Site

Abstract

Seagrass beds provide a wealth of ecosystem services that benefit society (e.g., habitat and feeding ground for juvenile fisheries species), but the Anthropocene has seen to a global decline of these productive habitats. Many temperate estuaries are becoming eutrophic due to horticultural, agricultural, and urban nutrient run off, but the role of this enrichment in seagrass decline is not fully understood. In a multi-site manipulative field experiment (Tauranga Harbour, New Zealand; 37°S, 176°E), we elevated pore water nitrogen (N) concentrations (mimicking the consequences of long-term eutrophication) to examine effects on seagrass meadows. At six intertidal seagrass sites with differing sediment properties and macrofaunal communities, slow release urea fertiliser (200 g N m−2) was buried in 1 m2 plots at the start of the peak growing season (early summer). After 60 d, we measured several seagrass morphological variables (cover, leaf length and width, and above and below ground biomass), sediment properties, and macrofauna community structure. Results demonstrate that the resilience of seagrass meadows to N enrichment is highly site-dependent. Two of the six sites showed significant declines in a multivariate indicator of seagrass morphology, driven by marked reductions in seagrass cover and leaf length (of up to 78%). Whereas, other sites appeared resilient to N enrichment. It was expected that these site-specific responses would be correlated with changes in sediment properties that alter nutrient processing capacity (permeability and biogeochemistry). However, site-specific responses were instead correlated with the ambient seagrass biomass and macrofaunal diversity. Sites with low ambient seagrass biomass and macrofaunal diversity were less resilient to enrichment. These results highlight that seagrass biomass could be a good indicator of resilience to nutrient enrichment, and the biomass where resilience is lost may lie between 140 and 285 g DW m−2. This study contributes knowledge that is required for predicting and mitigating future impacts of estuarine eutrophication on seagrass ecosystems.

Journal

Journal of Experimental Marine Biology and EcologyElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off