Biodegradation of high doses of commercial pesticide products in pilot-scale biobeds using olive-oil agroindustry wastes

Biodegradation of high doses of commercial pesticide products in pilot-scale biobeds using... Biobeds systems containing soil, peat and straw (SPS) are used worldwide to eliminate pesticide point-source contamination, but implantation is difficult when peat and/or straw are not available. Novel biobeds composed of soil, olive pruning and wet olive mill cake (SCPr) or its vermicompost (SVPr) were assayed at pilot scale for its use in olive grove areas. Their removal efficiency for five pesticides applied at high concentration was compared with the biobed with SPS. The effect of a grass layer on the efficiency of these biobeds was also evaluated. Pesticides were retained mainly in the upper layer. In non-planted biobeds with SCPr and SVPr, pesticides dissipation was higher than in SPS, except for diuron. In the biobed with SVPr, with the highest pesticide dissipation capacity, the removed amount of dimethoate, imidacloprid, tebuconazole, diuron and oxyfluorfen was 100, 80, 73, 75 and 50%, respectively. The grass layer enhanced dehydrogenase and diphenol-oxidase activities, modified the pesticides dissipation kinetics and favored the pesticide downward movement. One metabolite of imidacloprid, 3 of oxyfluorfen and 4 of diuron were identified by GC-MS. These novel biobeds represent an alternative to the traditional one and a contribution to promote a circular economy for the olive-oil production. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Environmental Management Elsevier

Biodegradation of high doses of commercial pesticide products in pilot-scale biobeds using olive-oil agroindustry wastes

Loading next page...
 
/lp/elsevier/biodegradation-of-high-doses-of-commercial-pesticide-products-in-pilot-5YmiJ58sIr
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0301-4797
D.O.I.
10.1016/j.jenvman.2017.08.032
Publisher site
See Article on Publisher Site

Abstract

Biobeds systems containing soil, peat and straw (SPS) are used worldwide to eliminate pesticide point-source contamination, but implantation is difficult when peat and/or straw are not available. Novel biobeds composed of soil, olive pruning and wet olive mill cake (SCPr) or its vermicompost (SVPr) were assayed at pilot scale for its use in olive grove areas. Their removal efficiency for five pesticides applied at high concentration was compared with the biobed with SPS. The effect of a grass layer on the efficiency of these biobeds was also evaluated. Pesticides were retained mainly in the upper layer. In non-planted biobeds with SCPr and SVPr, pesticides dissipation was higher than in SPS, except for diuron. In the biobed with SVPr, with the highest pesticide dissipation capacity, the removed amount of dimethoate, imidacloprid, tebuconazole, diuron and oxyfluorfen was 100, 80, 73, 75 and 50%, respectively. The grass layer enhanced dehydrogenase and diphenol-oxidase activities, modified the pesticides dissipation kinetics and favored the pesticide downward movement. One metabolite of imidacloprid, 3 of oxyfluorfen and 4 of diuron were identified by GC-MS. These novel biobeds represent an alternative to the traditional one and a contribution to promote a circular economy for the olive-oil production.

Journal

Journal of Environmental ManagementElsevier

Published: Dec 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off