Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil

Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input... We studied the role of biochar in improving soil fertility for maize production. The effects of biochar on the alleviation of three potential physical-chemical soil limitations for maize growth were investigated, i.e. water stress, nutrient stress and acid stress. Experiments involved soils with two dosages of biochar (0.5% and 2% w:w), as well as ones without biochar, in combination with four different dosages of NPK fertilizer, water and lime. Biochar was produced from the invasive shrubby weed Eupatorium adenophorum using flame curtain kilns. This is the first study to alleviate one by one the water stress, nutrient stress and acid stress in order to investigate the mechanisms of biochar effects on soil fertility.Biochar addition increased soil moisture, potassium (K) and plant available phosphorous (P-AL), which all showed significant positive relationship (p<0.001) with above ground biomass of maize. However, biochar was much more effective at abundant soil watering (+311% biomass) than at water-starved conditions (+67% biomass), indicating that biochar did increase soil moisture, but that this was not the main reason for the positive biomass growth effects. Biochar addition did have a stronger effect under nutrient-stressed conditions (+363%) than under abundant nutrient application (+132%). Biochar amendment increased soil pH, but liming and pH had no effect on maize dry biomass, so acidity stress alleviation was not the mechanism of biochar effects on soil fertility.In conclusion, the alleviation of nutrient stress was the probably the main factor contributing to the increased maize biomass production upon biochar addition to this moderately acidic Inceptisol. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil

Loading next page...
 
/lp/elsevier/biochar-improves-maize-growth-by-alleviation-of-nutrient-stress-in-a-RlvsIb70Sd
Publisher
Elsevier
Copyright
Copyright © 2018 The Authors
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2018.01.022
Publisher site
See Article on Publisher Site

Abstract

We studied the role of biochar in improving soil fertility for maize production. The effects of biochar on the alleviation of three potential physical-chemical soil limitations for maize growth were investigated, i.e. water stress, nutrient stress and acid stress. Experiments involved soils with two dosages of biochar (0.5% and 2% w:w), as well as ones without biochar, in combination with four different dosages of NPK fertilizer, water and lime. Biochar was produced from the invasive shrubby weed Eupatorium adenophorum using flame curtain kilns. This is the first study to alleviate one by one the water stress, nutrient stress and acid stress in order to investigate the mechanisms of biochar effects on soil fertility.Biochar addition increased soil moisture, potassium (K) and plant available phosphorous (P-AL), which all showed significant positive relationship (p<0.001) with above ground biomass of maize. However, biochar was much more effective at abundant soil watering (+311% biomass) than at water-starved conditions (+67% biomass), indicating that biochar did increase soil moisture, but that this was not the main reason for the positive biomass growth effects. Biochar addition did have a stronger effect under nutrient-stressed conditions (+363%) than under abundant nutrient application (+132%). Biochar amendment increased soil pH, but liming and pH had no effect on maize dry biomass, so acidity stress alleviation was not the mechanism of biochar effects on soil fertility.In conclusion, the alleviation of nutrient stress was the probably the main factor contributing to the increased maize biomass production upon biochar addition to this moderately acidic Inceptisol.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off