Bio-inspired hybrid scaffold of zinc oxide-functionalized multi-wall carbon nanotubes reinforced polyurethane nanofibers for bone tissue engineering

Bio-inspired hybrid scaffold of zinc oxide-functionalized multi-wall carbon nanotubes reinforced... In this study, we prepared nanotopographical polyurethane (PU)-based bioactive scaffolds that incorporated uniformly dispersed functionalized multi-wall carbon nanotubes (fMWCNTs) and zinc oxide (ZnO) nanoparticles (NPs) using an electrospinning technique. We found that well dispersed fMWCNTs along with ZnO NPs reinforced PU fibers demonstrated significant improvement in mechanical strength, hydrophilicity, thermal stability, electrical conductivity, degradability, biomineralization, and biocompatibility. Inspired by the exciting nature of biopolymeric composite (PU/ZnO-fMWCNTs) membranes, these hybrid scaffolds offer extensive interest to tissue engineering as a potential biomedical application. The specific bioactive properties and cell-biomaterial interaction of electrospun scaffold containing 0.2wt% ZnO with 0.4wt% fMWCNTs were found to demonstrate anti-bacterial activity and cytocompatibility. Furthermore, the highly charged density, large surface-to-volume ratio, and more functional groups in fMWCNTs integrated on the scaffolds promote osteogenic differentiation of pre-osteoblast (MC3T3-E1) cells. Therefore, the novel as-prepared multifunctional electrospun fibrous scaffold could suggest new avenues for exploration as promising osteoproductive and osteoinductive biomaterials that offer great benefit to bone tissue engineering. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Materials & design Elsevier

Bio-inspired hybrid scaffold of zinc oxide-functionalized multi-wall carbon nanotubes reinforced polyurethane nanofibers for bone tissue engineering

Loading next page...
 
/lp/elsevier/bio-inspired-hybrid-scaffold-of-zinc-oxide-functionalized-multi-wall-Cmd10ECDkg
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0264-1275
eISSN
0141-5530
D.O.I.
10.1016/j.matdes.2017.07.049
Publisher site
See Article on Publisher Site

Abstract

In this study, we prepared nanotopographical polyurethane (PU)-based bioactive scaffolds that incorporated uniformly dispersed functionalized multi-wall carbon nanotubes (fMWCNTs) and zinc oxide (ZnO) nanoparticles (NPs) using an electrospinning technique. We found that well dispersed fMWCNTs along with ZnO NPs reinforced PU fibers demonstrated significant improvement in mechanical strength, hydrophilicity, thermal stability, electrical conductivity, degradability, biomineralization, and biocompatibility. Inspired by the exciting nature of biopolymeric composite (PU/ZnO-fMWCNTs) membranes, these hybrid scaffolds offer extensive interest to tissue engineering as a potential biomedical application. The specific bioactive properties and cell-biomaterial interaction of electrospun scaffold containing 0.2wt% ZnO with 0.4wt% fMWCNTs were found to demonstrate anti-bacterial activity and cytocompatibility. Furthermore, the highly charged density, large surface-to-volume ratio, and more functional groups in fMWCNTs integrated on the scaffolds promote osteogenic differentiation of pre-osteoblast (MC3T3-E1) cells. Therefore, the novel as-prepared multifunctional electrospun fibrous scaffold could suggest new avenues for exploration as promising osteoproductive and osteoinductive biomaterials that offer great benefit to bone tissue engineering.

Journal

Materials & designElsevier

Published: Nov 5, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off