Binding studies of triclocarban with bovine serum albumin: Insights from multi-spectroscopy and molecular modeling methods

Binding studies of triclocarban with bovine serum albumin: Insights from multi-spectroscopy and... The antimicrobial triclocarban (TCC) is frequently found in various personal care products (PCPs), and recent studies have demonstrated that it shows a high unintended biological activity on humans and wildlife. To evaluate the toxicity of TCC at the protein level, the effect of TCC on bovine serum albumin (BSA) has been investigated using various spectroscopic methods in combination with molecular modeling. Analysis of fluorescence quenching data of BSA revealed the formation of a ground state BSA-TCC complex with a binding constant of 2.58 × 104 M−1 at 298 K. The values of the thermodynamic parameters suggested that the binding of TCC to BSA was driven mainly by hydrophobic interaction and hydrogen bond. Site marker competitive experiments coupled with molecular docking studies confirmed that site I was the main binding site for TCC on BSA. Furthermore, TCC binding to BSA led to conformational and structural alterations of BSA as revealed by multi-spectroscopic studies. In addition, the stability of BSA and BSA-TCC complex were well analyzed by the molecular dynamics studies. In short, this work indicated that TCC could interact with BSA and impact the conformation of BSA, which could provide valuable information to understand the toxicity mechanism of TCC. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy Elsevier

Binding studies of triclocarban with bovine serum albumin: Insights from multi-spectroscopy and molecular modeling methods

Loading next page...
 
/lp/elsevier/binding-studies-of-triclocarban-with-bovine-serum-albumin-insights-IqGc6VrBjm
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
1386-1425
D.O.I.
10.1016/j.saa.2018.04.070
Publisher site
See Article on Publisher Site

Abstract

The antimicrobial triclocarban (TCC) is frequently found in various personal care products (PCPs), and recent studies have demonstrated that it shows a high unintended biological activity on humans and wildlife. To evaluate the toxicity of TCC at the protein level, the effect of TCC on bovine serum albumin (BSA) has been investigated using various spectroscopic methods in combination with molecular modeling. Analysis of fluorescence quenching data of BSA revealed the formation of a ground state BSA-TCC complex with a binding constant of 2.58 × 104 M−1 at 298 K. The values of the thermodynamic parameters suggested that the binding of TCC to BSA was driven mainly by hydrophobic interaction and hydrogen bond. Site marker competitive experiments coupled with molecular docking studies confirmed that site I was the main binding site for TCC on BSA. Furthermore, TCC binding to BSA led to conformational and structural alterations of BSA as revealed by multi-spectroscopic studies. In addition, the stability of BSA and BSA-TCC complex were well analyzed by the molecular dynamics studies. In short, this work indicated that TCC could interact with BSA and impact the conformation of BSA, which could provide valuable information to understand the toxicity mechanism of TCC.

Journal

Spectrochimica Acta Part A: Molecular and Biomolecular SpectroscopyElsevier

Published: Sep 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off