Big data-informed energy efficiency assessment of China industry sectors based on K-means clustering

Big data-informed energy efficiency assessment of China industry sectors based on K-means clustering The regional energy management body has a large amount of regional industrial companies’ energy consumption data. It can evaluate the energy utilization of listed regional industrial companies based on the total data and, then, find the key points for understanding the resources usage patterns, identifying the problematic companies, and establishing good energy consumption practices. This paper reviews the research progress on big data analysis and industrial energy efficiency evaluation and focuses on the energy efficiency evaluation methods based on energy consumption process analysis and big data mining approach. Based on K-means and multi-dimensional association rules algorithm, to analyze the characteristics of regional energy consumption in different industries and companies, we cluster single industry in K-means and finding their levels of water and energy consumption. This classification provided us a reference point to identify the industries and companies to focus on and locate the bad consumption practices and environmental performance. Then, multi-dimensional association rules are used to find the correlation of processes, companies and energy efficiency to guide the energy conservation in regional energy monitor. The output of our research is a working Big Data analytics platform and the results generated from advance analytics techniques applied specifically to solve regional energy efficiency problems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cleaner Production Elsevier

Big data-informed energy efficiency assessment of China industry sectors based on K-means clustering

Loading next page...
 
/lp/elsevier/big-data-informed-energy-efficiency-assessment-of-china-industry-I301OoxK99
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0959-6526
D.O.I.
10.1016/j.jclepro.2018.02.129
Publisher site
See Article on Publisher Site

Abstract

The regional energy management body has a large amount of regional industrial companies’ energy consumption data. It can evaluate the energy utilization of listed regional industrial companies based on the total data and, then, find the key points for understanding the resources usage patterns, identifying the problematic companies, and establishing good energy consumption practices. This paper reviews the research progress on big data analysis and industrial energy efficiency evaluation and focuses on the energy efficiency evaluation methods based on energy consumption process analysis and big data mining approach. Based on K-means and multi-dimensional association rules algorithm, to analyze the characteristics of regional energy consumption in different industries and companies, we cluster single industry in K-means and finding their levels of water and energy consumption. This classification provided us a reference point to identify the industries and companies to focus on and locate the bad consumption practices and environmental performance. Then, multi-dimensional association rules are used to find the correlation of processes, companies and energy efficiency to guide the energy conservation in regional energy monitor. The output of our research is a working Big Data analytics platform and the results generated from advance analytics techniques applied specifically to solve regional energy efficiency problems.

Journal

Journal of Cleaner ProductionElsevier

Published: May 10, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off