Beryllium-7 in vegetation, soil, sediment and runoff on the northern Loess Plateau

Beryllium-7 in vegetation, soil, sediment and runoff on the northern Loess Plateau Beryllium-7 (7Be), as a potentially powerful tracer, was widely used to document soil redistribution and identify sediment sources in recent decades, but the quantity and distribution of 7Be in vegetation, soil, sediment and runoff on the Loess Plateau have not been fully described. In this study, we measured 7Be in vegetation, soil, sediment and runoff on the northern Loess Plateau of China and analyzed its variations during the rainy season to assess the potential of the 7Be method for documenting soil redistribution and identifying sediment sources in a wide range of environments. The results indicated that vegetation, soil, and sediment samples showed higher levels and larger variations of 7Be activities during the rainy season. The drying plants showed 7Be mass activity that was more than three times higher than that of living and semi-decomposed plants. 7Be mass activity in plants and sediment was much higher than in the soil. 7Be activity in runoff water with a few submicron suspended particles varied slightly and was far lower than in plant, soil and sediment samples. The cumulative precipitation generally determined 7Be inventory held by plants and soil. An inverse relationship was found between the 7Be mass activity in sediment and the sediment amount. Globally, approximate 30% of the total 7Be was held by plants in both the herbaceous and subshrub plots. Approximate 10% of the total 7Be was lost with sediment from the bare plot. A very small proportion of 7Be (1.18%–3.20%) was lost with runoff, and the vast majority of 7Be was retained in the slope soil at the end of rainy season. Vegetation cover and soil erosion significantly affected the spatial distribution and variations of the 7Be inventory in soil, providing a necessary condition for the development of a 7Be method to document soil erosion on slopes with vegetation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Beryllium-7 in vegetation, soil, sediment and runoff on the northern Loess Plateau

Loading next page...
 
/lp/elsevier/beryllium-7-in-vegetation-soil-sediment-and-runoff-on-the-northern-rIO0FAO538
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2018.01.156
Publisher site
See Article on Publisher Site

Abstract

Beryllium-7 (7Be), as a potentially powerful tracer, was widely used to document soil redistribution and identify sediment sources in recent decades, but the quantity and distribution of 7Be in vegetation, soil, sediment and runoff on the Loess Plateau have not been fully described. In this study, we measured 7Be in vegetation, soil, sediment and runoff on the northern Loess Plateau of China and analyzed its variations during the rainy season to assess the potential of the 7Be method for documenting soil redistribution and identifying sediment sources in a wide range of environments. The results indicated that vegetation, soil, and sediment samples showed higher levels and larger variations of 7Be activities during the rainy season. The drying plants showed 7Be mass activity that was more than three times higher than that of living and semi-decomposed plants. 7Be mass activity in plants and sediment was much higher than in the soil. 7Be activity in runoff water with a few submicron suspended particles varied slightly and was far lower than in plant, soil and sediment samples. The cumulative precipitation generally determined 7Be inventory held by plants and soil. An inverse relationship was found between the 7Be mass activity in sediment and the sediment amount. Globally, approximate 30% of the total 7Be was held by plants in both the herbaceous and subshrub plots. Approximate 10% of the total 7Be was lost with sediment from the bare plot. A very small proportion of 7Be (1.18%–3.20%) was lost with runoff, and the vast majority of 7Be was retained in the slope soil at the end of rainy season. Vegetation cover and soil erosion significantly affected the spatial distribution and variations of the 7Be inventory in soil, providing a necessary condition for the development of a 7Be method to document soil erosion on slopes with vegetation.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off