Bending and vibration behaviors of matrix cracked hybrid laminated plates containing CNTR-FG layers and FRC layers

Bending and vibration behaviors of matrix cracked hybrid laminated plates containing CNTR-FG... The influence of matrix cracks on bending and vibration behaviors of hybrid laminated plates is investigated based on an element-free numerical framework. Carbon nanotube reinforced functionally graded (CNTR-FG) layers and conventional graphite fiber reinforced composite (FRC) layers are selected as layer elements for the considered hybrid laminated plates. To illustrate the degraded stiffness, a matrix-cracked model, namely self-consistent model (SCM), is employed. Based on the first-order shear deformation theory (FSDT), we can obtain the governing equation. An element-free numerical framework is proposed to solve the governing equation for obtaining the bending and vibration solutions. In addition, some selected calculations are furnished to illustrate the influences of matrix crack densities, boundary conditions, material parameters and geometric parameters on the bending and vibration behavior characteristics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

Bending and vibration behaviors of matrix cracked hybrid laminated plates containing CNTR-FG layers and FRC layers

Loading next page...
 
/lp/elsevier/bending-and-vibration-behaviors-of-matrix-cracked-hybrid-laminated-t0Lqx7n1xX
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2017.10.004
Publisher site
See Article on Publisher Site

Abstract

The influence of matrix cracks on bending and vibration behaviors of hybrid laminated plates is investigated based on an element-free numerical framework. Carbon nanotube reinforced functionally graded (CNTR-FG) layers and conventional graphite fiber reinforced composite (FRC) layers are selected as layer elements for the considered hybrid laminated plates. To illustrate the degraded stiffness, a matrix-cracked model, namely self-consistent model (SCM), is employed. Based on the first-order shear deformation theory (FSDT), we can obtain the governing equation. An element-free numerical framework is proposed to solve the governing equation for obtaining the bending and vibration solutions. In addition, some selected calculations are furnished to illustrate the influences of matrix crack densities, boundary conditions, material parameters and geometric parameters on the bending and vibration behavior characteristics.

Journal

Composite StructuresElsevier

Published: Jan 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off