Behavioural modification of local hydrodynamics by asteroids enhances reproductive success

Behavioural modification of local hydrodynamics by asteroids enhances reproductive success The reproduction of apex species, such as sea stars, is important for sustaining many marine ecosystems. Many sea star species reproduce externally, introducing gametes in the turbulent benthic boundary layer. Sea stars often aggregate and adopt characteristic behaviour, such as arched posturing, while spawning. Here we quantify, for the first time, the hydrodynamic advantages of postural changes and the extent to which they enhance the efficiency of external reproduction. Hydrodynamic and fertilisation kinetic theoretical modelling were used to provide context and comparison. The arched posture was clearly important in the downstream advection of gametes. Digital particle image velocimetry, acoustic doppler velocimetry and dye release experiments indicated reduced wake and lower shear stresses downstream of arched sea stars, which increased downstream transport of gametes compared to those in the flat position. In all cases, sperm concentration decay rates of two orders-of-magnitude over distances <20cm were inferred from fluorometry, confirming the requirement for close aggregation. The level of turbulence and hence downstream gamete dilution was increased by greater current speeds and a rougher seabed. Both an arched posture and hydrodynamic conditions may improve external reproduction efficiency, with behavioural mechanisms providing the primary contribution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Experimental Marine Biology and Ecology Elsevier

Behavioural modification of local hydrodynamics by asteroids enhances reproductive success

Loading next page...
 
/lp/elsevier/behavioural-modification-of-local-hydrodynamics-by-asteroids-enhances-WODPR2szTb
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0022-0981
eISSN
1879-1697
D.O.I.
10.1016/j.jembe.2017.12.020
Publisher site
See Article on Publisher Site

Abstract

The reproduction of apex species, such as sea stars, is important for sustaining many marine ecosystems. Many sea star species reproduce externally, introducing gametes in the turbulent benthic boundary layer. Sea stars often aggregate and adopt characteristic behaviour, such as arched posturing, while spawning. Here we quantify, for the first time, the hydrodynamic advantages of postural changes and the extent to which they enhance the efficiency of external reproduction. Hydrodynamic and fertilisation kinetic theoretical modelling were used to provide context and comparison. The arched posture was clearly important in the downstream advection of gametes. Digital particle image velocimetry, acoustic doppler velocimetry and dye release experiments indicated reduced wake and lower shear stresses downstream of arched sea stars, which increased downstream transport of gametes compared to those in the flat position. In all cases, sperm concentration decay rates of two orders-of-magnitude over distances <20cm were inferred from fluorometry, confirming the requirement for close aggregation. The level of turbulence and hence downstream gamete dilution was increased by greater current speeds and a rougher seabed. Both an arched posture and hydrodynamic conditions may improve external reproduction efficiency, with behavioural mechanisms providing the primary contribution.

Journal

Journal of Experimental Marine Biology and EcologyElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off