Behaviour of aluminium in forest soils with different lithology and herb vegetation cover

Behaviour of aluminium in forest soils with different lithology and herb vegetation cover The aim of this study was to determine the content, distribution and behaviour of Al in soils under beech forest with different parent rock, and to assess the role of herbaceous vegetation on soil Al behaviour. We hypothesize that the contents of elements in the soil sorption complex (Al etc.) are strongly influenced by vegetation cover. Also, low molecular mass organic acids (LMMOA) can be considered as an indicator of soil organic matter (SOM) decomposition and vegetation litter turnover. Speciation of LMMOA, nutrition content (PO43−, Ca2+, K+) and element composition in aqueous extracts were determined by means of ion chromatography and inductively coupled plasma - optical emission spectrometry (ICP-OES) respectively. Active and exchangeable pH, sorption characteristics and exchangeable Al (Alex) were determined in BaCl2 extracts by ICP-OES. Elemental composition of parent rocks was assessed by means of X-ray fluorescence spectroscopy. Herb-poor localities showed lower pH, less nutrients (PO43−, Ca2+, K+), less LMMOA, a larger stock of SOM and greater cation exchange capacity. There was also lower mobilisation of Al in organic horizons, which explains the larger pools of Al. Generally, we can conclude that LMMOA, and thus soil vegetation cover, play an important role in the Al soil cycle. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Inorganic Biochemistry Elsevier

Behaviour of aluminium in forest soils with different lithology and herb vegetation cover

Loading next page...
 
/lp/elsevier/behaviour-of-aluminium-in-forest-soils-with-different-lithology-and-fbbn36d8Ti
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Inc.
ISSN
0162-0134
eISSN
1873-3344
D.O.I.
10.1016/j.jinorgbio.2017.09.017
Publisher site
See Article on Publisher Site

Abstract

The aim of this study was to determine the content, distribution and behaviour of Al in soils under beech forest with different parent rock, and to assess the role of herbaceous vegetation on soil Al behaviour. We hypothesize that the contents of elements in the soil sorption complex (Al etc.) are strongly influenced by vegetation cover. Also, low molecular mass organic acids (LMMOA) can be considered as an indicator of soil organic matter (SOM) decomposition and vegetation litter turnover. Speciation of LMMOA, nutrition content (PO43−, Ca2+, K+) and element composition in aqueous extracts were determined by means of ion chromatography and inductively coupled plasma - optical emission spectrometry (ICP-OES) respectively. Active and exchangeable pH, sorption characteristics and exchangeable Al (Alex) were determined in BaCl2 extracts by ICP-OES. Elemental composition of parent rocks was assessed by means of X-ray fluorescence spectroscopy. Herb-poor localities showed lower pH, less nutrients (PO43−, Ca2+, K+), less LMMOA, a larger stock of SOM and greater cation exchange capacity. There was also lower mobilisation of Al in organic horizons, which explains the larger pools of Al. Generally, we can conclude that LMMOA, and thus soil vegetation cover, play an important role in the Al soil cycle.

Journal

Journal of Inorganic BiochemistryElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off