Behavioral interventions for reducing head motion during MRI scans in children

Behavioral interventions for reducing head motion during MRI scans in children A major limitation to structural and functional MRI (fMRI) scans is their susceptibility to head motion artifacts. Even submillimeter movements can systematically distort functional connectivity, morphometric, and diffusion imaging results. In patient care, sedation is often used to minimize head motion, but it incurs increased costs and risks. In research settings, sedation is typically not an ethical option. Therefore, safe methods that reduce head motion are critical for improving MRI quality, especially in high movement individuals such as children and neuropsychiatric patients. We investigated the effects of (1) viewing movies and (2) receiving real-time visual feedback about head movement in 24 children (5–15 years old). Children completed fMRI scans during which they viewed a fixation cross (i.e., rest) or a cartoon movie clip, and during some of the scans they also received real-time visual feedback about head motion. Head motion was significantly reduced during movie watching compared to rest and when receiving feedback compared to receiving no feedback. However, these results depended on age, such that the effects were largely driven by the younger children. Children older than 10 years showed no significant benefit. We also found that viewing movies significantly altered the functional connectivity of fMRI data, suggesting that fMRI scans during movies cannot be equated to standard resting-state fMRI scans. The implications of these results are twofold: (1) given the reduction in head motion with behavioral interventions, these methods should be tried first for all clinical and structural MRIs in lieu of sedation; and (2) for fMRI research scans, these methods can reduce head motion in certain groups, but investigators must keep in mind the effects on functional MRI data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroimage Elsevier

Loading next page...
 
/lp/elsevier/behavioral-interventions-for-reducing-head-motion-during-mri-scans-in-ugtB6WDyDf
Publisher
Elsevier
Copyright
Copyright © 2018 The Authors
ISSN
1053-8119
eISSN
1095-9572
D.O.I.
10.1016/j.neuroimage.2018.01.023
Publisher site
See Article on Publisher Site

Abstract

A major limitation to structural and functional MRI (fMRI) scans is their susceptibility to head motion artifacts. Even submillimeter movements can systematically distort functional connectivity, morphometric, and diffusion imaging results. In patient care, sedation is often used to minimize head motion, but it incurs increased costs and risks. In research settings, sedation is typically not an ethical option. Therefore, safe methods that reduce head motion are critical for improving MRI quality, especially in high movement individuals such as children and neuropsychiatric patients. We investigated the effects of (1) viewing movies and (2) receiving real-time visual feedback about head movement in 24 children (5–15 years old). Children completed fMRI scans during which they viewed a fixation cross (i.e., rest) or a cartoon movie clip, and during some of the scans they also received real-time visual feedback about head motion. Head motion was significantly reduced during movie watching compared to rest and when receiving feedback compared to receiving no feedback. However, these results depended on age, such that the effects were largely driven by the younger children. Children older than 10 years showed no significant benefit. We also found that viewing movies significantly altered the functional connectivity of fMRI data, suggesting that fMRI scans during movies cannot be equated to standard resting-state fMRI scans. The implications of these results are twofold: (1) given the reduction in head motion with behavioral interventions, these methods should be tried first for all clinical and structural MRIs in lieu of sedation; and (2) for fMRI research scans, these methods can reduce head motion in certain groups, but investigators must keep in mind the effects on functional MRI data.

Journal

NeuroimageElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off