Behavior of silver nanoparticles and ions in food simulants and low fat cow milk under migration conditions

Behavior of silver nanoparticles and ions in food simulants and low fat cow milk under migration... Research on the potential migration of nanoparticles (NPs) from nano-based food contact materials (FCMs) has often reached inconsistency in previous studies. Conventional food simulants and traditional migration tests, which are established for small molecules, have been used for studying the potential migration of NPs from nano-based FCMs. The suitability of conventional food simulants and migration tests was investigated by studying the behavior of 40 nm polyethylene glycol (PEG) coated AgNPs and silver ions in food simulants (10% ethanol, 20% ethanol, 50% ethanol, 3% acetic acid, olive oil) under migration conditions. Particle mass and number concentrations, ionic concentration and particle size distributions were determined by single particle inductively coupled plasma-mass spectrometry (spICP-MS) before and after incubation for 4 h or 10 days at 40 °C. In agreement with similar studies, 50% ethanol preserved the AgNPs, while acetic acid induced dissolution of AgNPs. Dissolution of the PEG-AgNPs obeyed pseudo-first-order reaction kinetics. PEG-AgNPs showed similar behavior in low fat cow milk during storage at 4 °C for 5 days as in the corresponding food simulant, 50% ethanol. Addition of sodium chloride to ultrapure water led to enhanced dissolution. The potential reduction of silver ions to NPs in food simulants, low fat milk and in alkaline conditions in the presence of reducing agents was studied. Based on the obtained results, it is unlikely that AgNPs are formed from Ag ions at the low concentration which are typically observed for the migration of Ag from polymeric FCMs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Food Control Elsevier

Behavior of silver nanoparticles and ions in food simulants and low fat cow milk under migration conditions

Loading next page...
 
/lp/elsevier/behavior-of-silver-nanoparticles-and-ions-in-food-simulants-and-low-D6YEUqXivL
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0956-7135
eISSN
1873-7129
D.O.I.
10.1016/j.foodcont.2018.01.023
Publisher site
See Article on Publisher Site

Abstract

Research on the potential migration of nanoparticles (NPs) from nano-based food contact materials (FCMs) has often reached inconsistency in previous studies. Conventional food simulants and traditional migration tests, which are established for small molecules, have been used for studying the potential migration of NPs from nano-based FCMs. The suitability of conventional food simulants and migration tests was investigated by studying the behavior of 40 nm polyethylene glycol (PEG) coated AgNPs and silver ions in food simulants (10% ethanol, 20% ethanol, 50% ethanol, 3% acetic acid, olive oil) under migration conditions. Particle mass and number concentrations, ionic concentration and particle size distributions were determined by single particle inductively coupled plasma-mass spectrometry (spICP-MS) before and after incubation for 4 h or 10 days at 40 °C. In agreement with similar studies, 50% ethanol preserved the AgNPs, while acetic acid induced dissolution of AgNPs. Dissolution of the PEG-AgNPs obeyed pseudo-first-order reaction kinetics. PEG-AgNPs showed similar behavior in low fat cow milk during storage at 4 °C for 5 days as in the corresponding food simulant, 50% ethanol. Addition of sodium chloride to ultrapure water led to enhanced dissolution. The potential reduction of silver ions to NPs in food simulants, low fat milk and in alkaline conditions in the presence of reducing agents was studied. Based on the obtained results, it is unlikely that AgNPs are formed from Ag ions at the low concentration which are typically observed for the migration of Ag from polymeric FCMs.

Journal

Food ControlElsevier

Published: Jul 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off