Bayesian estimation of true prevalence, sensitivity and specificity of three diagnostic tests for detection of Escherichia coli O157 in cattle feces

Bayesian estimation of true prevalence, sensitivity and specificity of three diagnostic tests for... Cattle are a reservoir for Escherichia coli O157 and they shed the pathogen in their feces. Fecal contaminants on the hides can be transferred onto carcasses during processing at slaughter plants, thereby serving as a source of foodborne infection in humans. The detection of E. coli O157 in cattle feces is based on culture, immunological, and molecular methods We evaluated the diagnostic sensitivity and specificity of one culture- and two PCR-based tests for the detection of E. coli O157 in cattle feces, and its true prevalence using a Bayesian implementation of latent class models. A total of 576 fecal samples were collected from the floor of pens of finishing feedlot cattle in the central United States during summer 2013. Samples were enriched and subjected to detection of E. coli O157 by culture (immunomagnetic separation, plating on a selective medium, latex agglutination, and indole testing), conventional PCR (cPCR), and multiplex quantitative PCR (mqPCR). The statistical models assumed conditional dependence of the PCR tests and high specificity for culture (mode=99%; 5th percentile=97%). Prior estimates of test parameters were elicited from three experts. Estimated posterior sensitivity (posterior median and 95% highest posterior density intervals) of culture, cPCR, and mqPCR was 49.1% (44.8–53.4%), 59.7% (55.3–63.9%), and 97.3% (95.1–99.0%), respectively. Estimated posterior specificity of culture, cPCR, and mqPCR were 98.7% (96.8–99.8%), 94.1% (87.4–99.1%), and 94.8% (84.1–99.9%), respectively. True prevalence was estimated at 91.3% (88.1–94.2%). There was evidence of a weak conditional dependence between cPCR and mqPCR amongst test positive samples, but no evidence of conditional dependence amongst test negative samples. Sensitivity analyses showed that overall our posterior inference was rather robust to the choice of priors, except for inference on specificity of mqPCR, which was estimated with considerable uncertainty. Our study evaluates performance of three diagnostic tests for detection of E. coli O157 in feces of feedlot cattle which is important for quantifying true fecal prevalence and adjusting for test error in risk modeling. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Preventive Veterinary Medicine Elsevier

Bayesian estimation of true prevalence, sensitivity and specificity of three diagnostic tests for detection of Escherichia coli O157 in cattle feces

Loading next page...
 
/lp/elsevier/bayesian-estimation-of-true-prevalence-sensitivity-and-specificity-of-rzbrOxWKHp
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0167-5877
eISSN
1873-1716
D.O.I.
10.1016/j.prevetmed.2017.10.002
Publisher site
See Article on Publisher Site

Abstract

Cattle are a reservoir for Escherichia coli O157 and they shed the pathogen in their feces. Fecal contaminants on the hides can be transferred onto carcasses during processing at slaughter plants, thereby serving as a source of foodborne infection in humans. The detection of E. coli O157 in cattle feces is based on culture, immunological, and molecular methods We evaluated the diagnostic sensitivity and specificity of one culture- and two PCR-based tests for the detection of E. coli O157 in cattle feces, and its true prevalence using a Bayesian implementation of latent class models. A total of 576 fecal samples were collected from the floor of pens of finishing feedlot cattle in the central United States during summer 2013. Samples were enriched and subjected to detection of E. coli O157 by culture (immunomagnetic separation, plating on a selective medium, latex agglutination, and indole testing), conventional PCR (cPCR), and multiplex quantitative PCR (mqPCR). The statistical models assumed conditional dependence of the PCR tests and high specificity for culture (mode=99%; 5th percentile=97%). Prior estimates of test parameters were elicited from three experts. Estimated posterior sensitivity (posterior median and 95% highest posterior density intervals) of culture, cPCR, and mqPCR was 49.1% (44.8–53.4%), 59.7% (55.3–63.9%), and 97.3% (95.1–99.0%), respectively. Estimated posterior specificity of culture, cPCR, and mqPCR were 98.7% (96.8–99.8%), 94.1% (87.4–99.1%), and 94.8% (84.1–99.9%), respectively. True prevalence was estimated at 91.3% (88.1–94.2%). There was evidence of a weak conditional dependence between cPCR and mqPCR amongst test positive samples, but no evidence of conditional dependence amongst test negative samples. Sensitivity analyses showed that overall our posterior inference was rather robust to the choice of priors, except for inference on specificity of mqPCR, which was estimated with considerable uncertainty. Our study evaluates performance of three diagnostic tests for detection of E. coli O157 in feces of feedlot cattle which is important for quantifying true fecal prevalence and adjusting for test error in risk modeling.

Journal

Preventive Veterinary MedicineElsevier

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off