BAP2 , a gene encoding a permease for branched-chain amino acids in Saccharomyces cerevisiae

BAP2 , a gene encoding a permease for branched-chain amino acids in Saccharomyces cerevisiae To select the gene coding for an isoleucine permease, an isoleucine dependent strain ( ilv 1 chal ) was transformed with a yeast genomic multicopy library, and colonies growing at a low isoleucine concentration were selected. Partial sequencing of the responsible plasmid insert revealed the presence of a previously sequenced 609 codon open reading frame of chromosome II with homology to known permeases. Deletion, extra dosage and C-terminal truncation of this gene were constructed in a strain lacking the general amino acid permease, and amino acid uptake was measured during growth in synthetic complete medium. The following observations prompted us to name the gene BAP2 (branched-chain amino acid permease). Deletion of BAP2 reduced uptake of leucine, isoleucine and valine by 25–50%, while the uptake of 8 other l -α-amino acids was unlatered or slightly increased. Introduction of BAP2 on a centromere-based vector, leading to a gene dosage of two or slightly more, caused a 50% increase in leucine uptake and a smaller increase for isoleucine and valine. However, when the 29 C-terminal codons of the plasmid-borne copy of BAP2 were substituted, the cells more than doubled the uptake of leucine, isoleucine and valine, while no or little increase in uptake was observed for the other 8 amino acids. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochimica et Biophysica Acta (BBA) - Molecular Cell Research Elsevier

BAP2 , a gene encoding a permease for branched-chain amino acids in Saccharomyces cerevisiae

Loading next page...
 
/lp/elsevier/bap2-a-gene-encoding-a-permease-for-branched-chain-amino-acids-in-wFXTyp7uxT
Publisher
Elsevier
Copyright
Copyright © 1995 Elsevier Ltd
ISSN
0167-4889
DOI
10.1016/0167-4889(95)00138-8
Publisher site
See Article on Publisher Site

Abstract

To select the gene coding for an isoleucine permease, an isoleucine dependent strain ( ilv 1 chal ) was transformed with a yeast genomic multicopy library, and colonies growing at a low isoleucine concentration were selected. Partial sequencing of the responsible plasmid insert revealed the presence of a previously sequenced 609 codon open reading frame of chromosome II with homology to known permeases. Deletion, extra dosage and C-terminal truncation of this gene were constructed in a strain lacking the general amino acid permease, and amino acid uptake was measured during growth in synthetic complete medium. The following observations prompted us to name the gene BAP2 (branched-chain amino acid permease). Deletion of BAP2 reduced uptake of leucine, isoleucine and valine by 25–50%, while the uptake of 8 other l -α-amino acids was unlatered or slightly increased. Introduction of BAP2 on a centromere-based vector, leading to a gene dosage of two or slightly more, caused a 50% increase in leucine uptake and a smaller increase for isoleucine and valine. However, when the 29 C-terminal codons of the plasmid-borne copy of BAP2 were substituted, the cells more than doubled the uptake of leucine, isoleucine and valine, while no or little increase in uptake was observed for the other 8 amino acids.

Journal

Biochimica et Biophysica Acta (BBA) - Molecular Cell ResearchElsevier

Published: Nov 30, 1995

References

  • Biochim. Biophys. Acta
    Verma, R.S.; Rao, T.V.G.; Prasad, R.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off