BAN-GZKP: Optimal Zero Knowledge Proof based Scheme for Wireless Body Area Networks

BAN-GZKP: Optimal Zero Knowledge Proof based Scheme for Wireless Body Area Networks We propose BAN-GZKP, a new BANZKP Zero Knowledge Proof (ZKP) based secure lightweight and energy efficient authentication scheme designed for Wireless Area Network (WBAN). BAN-GZKP improves the BANZKP scheme known as the best to date. BANZKP is vulnerable to several security attacks such as the replay attack, Distributed Denial-of-Service (DDoS) attacks at sink and redundancy information crack. However, BANZKP needs an end-to-end authentication which is not compliant with the human body postural mobility. Our scheme BAN-GZKP improves both the security and postural mobility resilience of BANZKP. Moreover, BAN-GZKP uses only a three-phase authentication which is optimal in the class of ZKP protocols. To fix the security vulnerabilities of BANZKP, BAN-GZKP uses a novel random key allocation and a Hop-by-Hop authentication definition. We further prove the reliability of our scheme to various attacks including those to which BANZKP is vulnerable. Furthermore, via extensive simulations we prove that our scheme, BAN-GZKP, outperforms BANZKP in terms of reliability to human body postural mobility for various network parameters (end-to-end delay, number of packets exchanged in the network, number of transmissions). We compared both schemes using representative convergecast strategies with various transmission rates and human postural mobility. Finally, it is important to mention that BAN-GZKP has no additional cost compared to BANZKP in terms memory, providing better computational complexity and less energy consumption. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ad Hoc Networks Elsevier

BAN-GZKP: Optimal Zero Knowledge Proof based Scheme for Wireless Body Area Networks

Loading next page...
 
/lp/elsevier/ban-gzkp-optimal-zero-knowledge-proof-based-scheme-for-wireless-body-LW7xRShUpa
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
1570-8705
D.O.I.
10.1016/j.adhoc.2018.04.006
Publisher site
See Article on Publisher Site

Abstract

We propose BAN-GZKP, a new BANZKP Zero Knowledge Proof (ZKP) based secure lightweight and energy efficient authentication scheme designed for Wireless Area Network (WBAN). BAN-GZKP improves the BANZKP scheme known as the best to date. BANZKP is vulnerable to several security attacks such as the replay attack, Distributed Denial-of-Service (DDoS) attacks at sink and redundancy information crack. However, BANZKP needs an end-to-end authentication which is not compliant with the human body postural mobility. Our scheme BAN-GZKP improves both the security and postural mobility resilience of BANZKP. Moreover, BAN-GZKP uses only a three-phase authentication which is optimal in the class of ZKP protocols. To fix the security vulnerabilities of BANZKP, BAN-GZKP uses a novel random key allocation and a Hop-by-Hop authentication definition. We further prove the reliability of our scheme to various attacks including those to which BANZKP is vulnerable. Furthermore, via extensive simulations we prove that our scheme, BAN-GZKP, outperforms BANZKP in terms of reliability to human body postural mobility for various network parameters (end-to-end delay, number of packets exchanged in the network, number of transmissions). We compared both schemes using representative convergecast strategies with various transmission rates and human postural mobility. Finally, it is important to mention that BAN-GZKP has no additional cost compared to BANZKP in terms memory, providing better computational complexity and less energy consumption.

Journal

Ad Hoc NetworksElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off