Bacterial assembly in the bio-cake of membrane bioreactors: Stochastic vs. deterministic processes

Bacterial assembly in the bio-cake of membrane bioreactors: Stochastic vs. deterministic processes Much about assembly processes dictating bio-cake microbiota remains uncertain, leading to poor understanding of membrane biofouling in membrane bioreactors (MBRs). This work aimed to reveal the underlying mechanisms driving bio-cake community during the biofouling process under different flux conditions. On the basis of 16S rRNA sequences, the results showed that bacterial diversity decreased with increasing fouling. Additionally, low-flux bio-cake (8 LMH) communities harbored much lower diversity than high-flux (16 LMH) bio-cake microbiomes. Ecological null model analyses and phylogenetic molecular ecological networks (pMENs) revealed that environmental filtering deterministically governed low-flux bio-cake communities. In contrast, high-flux bio-cake communities were mainly shaped in a stochastic manner. This is likely due to the higher stochastic deposition of bacterial taxa from bulk sludge because of the presence of a stronger drag force. Moreover, by lowering the flux, the interactions between bacterial lineages were enhanced; this is evidenced by the greater number of links, the higher average degree, and the higher average clustering coefficients within the pMENs in low-flux bio-cakes than those in high-flux bio-cakes. Most keystone fouling-related taxa in low-flux bio-cakes were motile and involved in nitrate reduction and polysaccharide/protein metabolism. This corroborated the important role of environmental filtering in the assembly process dictating low-flux bio-cake formation. Some low-abundance taxa were observed to be key fouling-related bacteria under both flux conditions, indicating that a few populations play paramount ecological roles in triggering biofouling. In summary, our findings clearly indicate distinct bio-cake community assembly patterns under different operational conditions and highlight the importance of developing specialized strategies for fouling control in individual MBR systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Research Elsevier

Bacterial assembly in the bio-cake of membrane bioreactors: Stochastic vs. deterministic processes

Loading next page...
 
/lp/elsevier/bacterial-assembly-in-the-bio-cake-of-membrane-bioreactors-stochastic-AuuEmRe8L8
Publisher
Elsevier
Copyright
Copyright © 2019 Elsevier Ltd
ISSN
0043-1354
D.O.I.
10.1016/j.watres.2019.03.093
Publisher site
See Article on Publisher Site

Abstract

Much about assembly processes dictating bio-cake microbiota remains uncertain, leading to poor understanding of membrane biofouling in membrane bioreactors (MBRs). This work aimed to reveal the underlying mechanisms driving bio-cake community during the biofouling process under different flux conditions. On the basis of 16S rRNA sequences, the results showed that bacterial diversity decreased with increasing fouling. Additionally, low-flux bio-cake (8 LMH) communities harbored much lower diversity than high-flux (16 LMH) bio-cake microbiomes. Ecological null model analyses and phylogenetic molecular ecological networks (pMENs) revealed that environmental filtering deterministically governed low-flux bio-cake communities. In contrast, high-flux bio-cake communities were mainly shaped in a stochastic manner. This is likely due to the higher stochastic deposition of bacterial taxa from bulk sludge because of the presence of a stronger drag force. Moreover, by lowering the flux, the interactions between bacterial lineages were enhanced; this is evidenced by the greater number of links, the higher average degree, and the higher average clustering coefficients within the pMENs in low-flux bio-cakes than those in high-flux bio-cakes. Most keystone fouling-related taxa in low-flux bio-cakes were motile and involved in nitrate reduction and polysaccharide/protein metabolism. This corroborated the important role of environmental filtering in the assembly process dictating low-flux bio-cake formation. Some low-abundance taxa were observed to be key fouling-related bacteria under both flux conditions, indicating that a few populations play paramount ecological roles in triggering biofouling. In summary, our findings clearly indicate distinct bio-cake community assembly patterns under different operational conditions and highlight the importance of developing specialized strategies for fouling control in individual MBR systems.

Journal

Water ResearchElsevier

Published: Jun 15, 2019

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off