Automated search of control points in surface-based morphometry

Automated search of control points in surface-based morphometry Cortical surface-based morphometry is based on a semi-automated analysis of structural MRI images. In FreeSurfer, a widespread tool for surface-based analyses, a visual check of gray-white matter borders is followed by the manual placement of control points to drive the topological correction (editing) of segmented data. A novel algorithm combining radial sampling and machine learning is presented for the automated control point search (ACPS).Four data sets with 3 T MRI structural images were used for ACPS validation, including raw data acquired twice in 36 healthy subjects and both raw and FreeSurfer preprocessed data of 125 healthy subjects from public databases. The unedited data from a subgroup of subjects were submitted to manual control point search and editing. The ACPS algorithm was trained on manual control points and tested on new (unseen) unedited data. Cortical thickness (CT) and fractal dimensionality (FD) were estimated in three data sets by reconstructing surfaces from both unedited and edited data, and the effects of editing were compared between manual and automated editing and versus no editing.The ACPS-based editing improved the surface reconstructions similarly to manual editing. Compared to no editing, ACPS-based and manual editing significantly reduced CT and FD in consistent regions across different data sets. Despite the extra processing of control point driven reconstructions, CT and FD estimates were highly reproducible in almost all cortical regions, albeit some problematic regions (e.g. entorhinal cortex) may benefit from different editing.The use of control points improves the surface reconstruction and the ACPS algorithm can automate their search reducing the burden of manual editing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroimage Elsevier

Loading next page...
 
/lp/elsevier/automated-search-of-control-points-in-surface-based-morphometry-yVr4GW16F7
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
1053-8119
eISSN
1095-9572
D.O.I.
10.1016/j.neuroimage.2018.04.035
Publisher site
See Article on Publisher Site

Abstract

Cortical surface-based morphometry is based on a semi-automated analysis of structural MRI images. In FreeSurfer, a widespread tool for surface-based analyses, a visual check of gray-white matter borders is followed by the manual placement of control points to drive the topological correction (editing) of segmented data. A novel algorithm combining radial sampling and machine learning is presented for the automated control point search (ACPS).Four data sets with 3 T MRI structural images were used for ACPS validation, including raw data acquired twice in 36 healthy subjects and both raw and FreeSurfer preprocessed data of 125 healthy subjects from public databases. The unedited data from a subgroup of subjects were submitted to manual control point search and editing. The ACPS algorithm was trained on manual control points and tested on new (unseen) unedited data. Cortical thickness (CT) and fractal dimensionality (FD) were estimated in three data sets by reconstructing surfaces from both unedited and edited data, and the effects of editing were compared between manual and automated editing and versus no editing.The ACPS-based editing improved the surface reconstructions similarly to manual editing. Compared to no editing, ACPS-based and manual editing significantly reduced CT and FD in consistent regions across different data sets. Despite the extra processing of control point driven reconstructions, CT and FD estimates were highly reproducible in almost all cortical regions, albeit some problematic regions (e.g. entorhinal cortex) may benefit from different editing.The use of control points improves the surface reconstruction and the ACPS algorithm can automate their search reducing the burden of manual editing.

Journal

NeuroimageElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off