Automated defect detection tool for closed circuit television (cctv) inspected sewer pipelines

Automated defect detection tool for closed circuit television (cctv) inspected sewer pipelines In sewer networks, the economic effects and costs that result from a pipeline failure are rising sharply. As a result, there is huge demand for inspection and rehabilitation of sewer pipelines. In addition to being inaccurate, current practices of sewer pipelines inspection are time consuming and may not keep up with the deterioration rates of the pipelines. This papers presents the development of an automated tool to detect some defects such as: cracks, deformation, settled deposits and joint displacement in sewer pipelines. The automated approach is dependent upon using image-processing techniques and several mathematical formulas to analyze output data from Closed Circuit Television (CCTV) camera images. The automated tool was able to detect cracks, displaced joints, ovality and settled deposits in pipelines using CCTV camera inspection output footage using two different datasets. To examine the performance of the proposed detection methodology, confusion matrices were constructed, in which true positives for crack, settled deposits and displaced joints were 74%, 53% and 65%. As for the ovality, all defects in the images were detected successfully. Although these values could indicate low performance, however the proposed methodology could be improved if additional images were used. Given that one inspection session can result in hundreds of CCTV camera footage, introducing an automated tool would help yield faster results. Additionally, given the subjective nature of evaluating the severity of defects, it would result in more systematic outputs since the current method rely heavily on the operator's experience. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Automation in Construction Elsevier

Automated defect detection tool for closed circuit television (cctv) inspected sewer pipelines

Loading next page...
 
/lp/elsevier/automated-defect-detection-tool-for-closed-circuit-television-cctv-cp9WzHuOFz
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0926-5805
D.O.I.
10.1016/j.autcon.2018.01.004
Publisher site
See Article on Publisher Site

Abstract

In sewer networks, the economic effects and costs that result from a pipeline failure are rising sharply. As a result, there is huge demand for inspection and rehabilitation of sewer pipelines. In addition to being inaccurate, current practices of sewer pipelines inspection are time consuming and may not keep up with the deterioration rates of the pipelines. This papers presents the development of an automated tool to detect some defects such as: cracks, deformation, settled deposits and joint displacement in sewer pipelines. The automated approach is dependent upon using image-processing techniques and several mathematical formulas to analyze output data from Closed Circuit Television (CCTV) camera images. The automated tool was able to detect cracks, displaced joints, ovality and settled deposits in pipelines using CCTV camera inspection output footage using two different datasets. To examine the performance of the proposed detection methodology, confusion matrices were constructed, in which true positives for crack, settled deposits and displaced joints were 74%, 53% and 65%. As for the ovality, all defects in the images were detected successfully. Although these values could indicate low performance, however the proposed methodology could be improved if additional images were used. Given that one inspection session can result in hundreds of CCTV camera footage, introducing an automated tool would help yield faster results. Additionally, given the subjective nature of evaluating the severity of defects, it would result in more systematic outputs since the current method rely heavily on the operator's experience.

Journal

Automation in ConstructionElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off