Atypical dopamine transporter inhibitors R-modafinil and JHW 007 differentially affect D2 autoreceptor neurotransmission and the firing rate of midbrain dopamine neurons

Atypical dopamine transporter inhibitors R-modafinil and JHW 007 differentially affect D2... Abuse of psychostimulants like cocaine that inhibit dopamine (DA) reuptake through the dopamine transporter (DAT) represents a major public health issue, however FDA-approved pharmacotherapies have yet to be developed. Recently a class of ligands termed “atypical DAT inhibitors” has gained attention due to their range of effectiveness in increasing extracellular DA levels without demonstrating significant abuse liability. These compounds not only hold promise as therapeutic agents to treat stimulant use disorders but also as experimental tools to improve our understanding of DAT function. Here we used patch clamp electrophysiology in mouse brain slices to explore the effects of two atypical DAT inhibitors (R-modafinil and JHW 007) on the physiology of single DA neurons in the substantia nigra and ventral tegmental area. Despite their commonalities of being DAT inhibitors that lack cocaine-like behavioral profiles, these compounds exhibited surprisingly divergent cellular effects. Similar to cocaine, R-modafinil slowed DA neuron firing in a D2 receptor-dependent manner and rapidly enhanced the amplitude and duration of D2 receptor-mediated currents in the midbrain. In contrast, JHW 007 exhibited little effect on firing, slow DAT blockade, and an unexpected inhibition of D2 receptor-mediated currents that may be due to direct D2 receptor antagonism. Furthermore, pretreatment with JHW 007 blunted the cellular effects of cocaine, suggesting that it may be valuable to investigate similar DAT inhibitors as potential therapeutic agents. Further exploration of these and other atypical DAT inhibitors may reveal important cellular effects of compounds that will have potential as pharmacotherapies for treating cocaine use disorders. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuropharmacology Elsevier

Atypical dopamine transporter inhibitors R-modafinil and JHW 007 differentially affect D2 autoreceptor neurotransmission and the firing rate of midbrain dopamine neurons

Loading next page...
 
/lp/elsevier/atypical-dopamine-transporter-inhibitors-r-modafinil-and-jhw-007-Mgbvq6SjoN
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0028-3908
eISSN
1873-7064
D.O.I.
10.1016/j.neuropharm.2017.06.016
Publisher site
See Article on Publisher Site

Abstract

Abuse of psychostimulants like cocaine that inhibit dopamine (DA) reuptake through the dopamine transporter (DAT) represents a major public health issue, however FDA-approved pharmacotherapies have yet to be developed. Recently a class of ligands termed “atypical DAT inhibitors” has gained attention due to their range of effectiveness in increasing extracellular DA levels without demonstrating significant abuse liability. These compounds not only hold promise as therapeutic agents to treat stimulant use disorders but also as experimental tools to improve our understanding of DAT function. Here we used patch clamp electrophysiology in mouse brain slices to explore the effects of two atypical DAT inhibitors (R-modafinil and JHW 007) on the physiology of single DA neurons in the substantia nigra and ventral tegmental area. Despite their commonalities of being DAT inhibitors that lack cocaine-like behavioral profiles, these compounds exhibited surprisingly divergent cellular effects. Similar to cocaine, R-modafinil slowed DA neuron firing in a D2 receptor-dependent manner and rapidly enhanced the amplitude and duration of D2 receptor-mediated currents in the midbrain. In contrast, JHW 007 exhibited little effect on firing, slow DAT blockade, and an unexpected inhibition of D2 receptor-mediated currents that may be due to direct D2 receptor antagonism. Furthermore, pretreatment with JHW 007 blunted the cellular effects of cocaine, suggesting that it may be valuable to investigate similar DAT inhibitors as potential therapeutic agents. Further exploration of these and other atypical DAT inhibitors may reveal important cellular effects of compounds that will have potential as pharmacotherapies for treating cocaine use disorders.

Journal

NeuropharmacologyElsevier

Published: Sep 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off