Atomistic investigation of wear mechanisms of a copper bi-crystal

Atomistic investigation of wear mechanisms of a copper bi-crystal In the present work, we investigate the wear mechanisms of a Cu bi-crystal containing a random high angle grain boundary by means of molecular dynamics simulations. The underlying deformation behavior of the material is analyzed and further related to the observed characteristics of mechanical response and resulting morphology of the worn surface. In particular, the grain boundary-associated mechanisms are characterized by advanced analysis techniques for lattice defects. Our simulation results indicate that in addition to dislocation slip and dislocation-grain boundary interactions, grain boundary migration plays an important role in the plastic deformation of Cu bi-crystal. It is found that the wear behavior of Cu depends on the crystallographic orientation of the worn surface and can be altered quite significantly by the presence of a grain boundary. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wear Elsevier

Atomistic investigation of wear mechanisms of a copper bi-crystal

Loading next page...
 
/lp/elsevier/atomistic-investigation-of-wear-mechanisms-of-a-copper-bi-crystal-el5X9jNcar
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier B.V.
ISSN
0043-1648
eISSN
1873-2577
D.O.I.
10.1016/j.wear.2015.02.023
Publisher site
See Article on Publisher Site

Abstract

In the present work, we investigate the wear mechanisms of a Cu bi-crystal containing a random high angle grain boundary by means of molecular dynamics simulations. The underlying deformation behavior of the material is analyzed and further related to the observed characteristics of mechanical response and resulting morphology of the worn surface. In particular, the grain boundary-associated mechanisms are characterized by advanced analysis techniques for lattice defects. Our simulation results indicate that in addition to dislocation slip and dislocation-grain boundary interactions, grain boundary migration plays an important role in the plastic deformation of Cu bi-crystal. It is found that the wear behavior of Cu depends on the crystallographic orientation of the worn surface and can be altered quite significantly by the presence of a grain boundary.

Journal

WearElsevier

Published: May 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off