Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment

Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical... To distinguish between pyrogenic and biological sources of PAHs in a tropical rain forest near Manaus, Brazil, we determined the concentrations of 21 PAHs in leaves, bark, twigs, and stem wood of forest trees, dead wood, mineral topsoil, litter layer, air, and Nasutitermes termite nest compartments. Naphthalene (NAPH) was the most abundant PAH with concentrations of 35 ng m −3 in air (>85% of the ∑21PAHs concentration), up to 1000 μg kg −1 in plants (>90%), 477 μg kg −1 in litter (>90%), 32 μg kg −1 in topsoil (>90%), and 160 μg kg −1 (>55%) in termite nests. In plants, the concentrations of PAHs in general decreased in the order leaves > bark > twigs > stem wood. The concentrations of most low-molecular weight PAHs in leaves and bark were near equilibrium with air, but those of NAPH were up to 50 times higher. Thus, the atmosphere seemed to be the major source of all PAHs in plants except for NAPH. Additionally, phenanthrene (PHEN) had elevated concentrations in bark and twigs of Vismia cayennensis trees (12–60 μg kg −1 ), which might have produced PHEN. In the mineral soil, perylene (PERY) was more abundant than in the litter layer, probably because of in situ biological production. Nasutitermes nests had the highest concentrations of most PAHs in exterior compartments (on average 8 and 15 μg kg −1 compared to <3 μg kg −1 in interior parts) and high PERY concentrations in all compartments (12–86 μg kg −1 ), indicating an in situ production of PERY in the nests. Our results demonstrate that the deposition of pyrolytic PAHs from the atmosphere controls the concentrations of most PAHs. However, the occurrence of NAPH, PHEN, and PERY in plants, termite nests, and soils at elevated concentrations supports the assumption of their biological origin. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment

Loading next page...
 
/lp/elsevier/atmospheric-versus-biological-sources-of-polycyclic-aromatic-Vk1phKxWbb
Publisher
Elsevier
Copyright
Copyright © 2004 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2004.09.012
Publisher site
See Article on Publisher Site

Abstract

To distinguish between pyrogenic and biological sources of PAHs in a tropical rain forest near Manaus, Brazil, we determined the concentrations of 21 PAHs in leaves, bark, twigs, and stem wood of forest trees, dead wood, mineral topsoil, litter layer, air, and Nasutitermes termite nest compartments. Naphthalene (NAPH) was the most abundant PAH with concentrations of 35 ng m −3 in air (>85% of the ∑21PAHs concentration), up to 1000 μg kg −1 in plants (>90%), 477 μg kg −1 in litter (>90%), 32 μg kg −1 in topsoil (>90%), and 160 μg kg −1 (>55%) in termite nests. In plants, the concentrations of PAHs in general decreased in the order leaves > bark > twigs > stem wood. The concentrations of most low-molecular weight PAHs in leaves and bark were near equilibrium with air, but those of NAPH were up to 50 times higher. Thus, the atmosphere seemed to be the major source of all PAHs in plants except for NAPH. Additionally, phenanthrene (PHEN) had elevated concentrations in bark and twigs of Vismia cayennensis trees (12–60 μg kg −1 ), which might have produced PHEN. In the mineral soil, perylene (PERY) was more abundant than in the litter layer, probably because of in situ biological production. Nasutitermes nests had the highest concentrations of most PAHs in exterior compartments (on average 8 and 15 μg kg −1 compared to <3 μg kg −1 in interior parts) and high PERY concentrations in all compartments (12–86 μg kg −1 ), indicating an in situ production of PERY in the nests. Our results demonstrate that the deposition of pyrolytic PAHs from the atmosphere controls the concentrations of most PAHs. However, the occurrence of NAPH, PHEN, and PERY in plants, termite nests, and soils at elevated concentrations supports the assumption of their biological origin.

Journal

Environmental PollutionElsevier

Published: May 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off