AT-RVD1 repairs mouse lung after cigarette smoke-induced emphysema via downregulation of oxidative stress by NRF2/KEAP1 pathway

AT-RVD1 repairs mouse lung after cigarette smoke-induced emphysema via downregulation of... Long-term exposure to cigarette smoke (CS) results in alveolar parenchyma destruction due to chronic inflammatory response and the imbalance between oxidants and antioxidants, and proteases and antiproteases. Emphysema is the main symptom of chronic obstructive pulmonary disease. Current treatment focuses on relieving respiratory symptoms, and inflammation resolution failure is an important pathophysiological element of the disease. Specialized pro-resolving mediators (SPMs) synthesized endogenously during resolution processes demonstrated beneficial effects in murine models of airway inflammation. Here, we aimed to test the SPM AT-RvD1 in a murine model of CS-induced emphysema. AT-RvD1 restored elastic fibers and lung morphology, with reduction in MMP-3, neutrophils, and myeloperoxidase activity and increases in macrophages and IL-10 levels. AT-RvD1 also decreased levels of oxidative stress markers and ROS via upregulation of the Nrf2/Keap1 pathway. Therefore, we suggest that AT-RvD1 causes pro-resolutive action in our murine model of CS-induced emphysema by upregulation of the Nrf2/Keap1 pathway. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Immunopharmacology Elsevier

AT-RVD1 repairs mouse lung after cigarette smoke-induced emphysema via downregulation of oxidative stress by NRF2/KEAP1 pathway

Loading next page...
 
/lp/elsevier/at-rvd1-repairs-mouse-lung-after-cigarette-smoke-induced-emphysema-via-haz5AVUpQg
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
1567-5769
eISSN
1878-1705
D.O.I.
10.1016/j.intimp.2018.01.045
Publisher site
See Article on Publisher Site

Abstract

Long-term exposure to cigarette smoke (CS) results in alveolar parenchyma destruction due to chronic inflammatory response and the imbalance between oxidants and antioxidants, and proteases and antiproteases. Emphysema is the main symptom of chronic obstructive pulmonary disease. Current treatment focuses on relieving respiratory symptoms, and inflammation resolution failure is an important pathophysiological element of the disease. Specialized pro-resolving mediators (SPMs) synthesized endogenously during resolution processes demonstrated beneficial effects in murine models of airway inflammation. Here, we aimed to test the SPM AT-RvD1 in a murine model of CS-induced emphysema. AT-RvD1 restored elastic fibers and lung morphology, with reduction in MMP-3, neutrophils, and myeloperoxidase activity and increases in macrophages and IL-10 levels. AT-RvD1 also decreased levels of oxidative stress markers and ROS via upregulation of the Nrf2/Keap1 pathway. Therefore, we suggest that AT-RvD1 causes pro-resolutive action in our murine model of CS-induced emphysema by upregulation of the Nrf2/Keap1 pathway.

Journal

International ImmunopharmacologyElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off