Asynchronous sliding mode control of Markovian jump systems with time-varying delays and partly accessible mode detection probabilities

Asynchronous sliding mode control of Markovian jump systems with time-varying delays and partly... In this work, the problem of asynchronous sliding mode control (SMC) is investigated for a class of uncertain Markovian jump systems (MJSs) with time-varying delays and stochastic perturbation. It is assumed that the system modes cannot be obtained synchronously by the controller, but instead there is a detector that provides estimated values of the system modes. This asynchronous phenomenon between the system modes and controller modes will be described in this work via a hidden Markov model with partly accessible mode detection probabilities. Based on a common sliding surface, an asynchronous SMC law depending on the detector mode is synthesized to ensure the mean square stability of the sliding mode dynamics and the reachability of the specified sliding surface simultaneously. Moreover, a design algorithm for obtaining the asynchronous SMC law is established. Finally, an application of the automotive electronic throttle system is provided to illustrate the effectiveness and advantages of the proposed asynchronous sliding mode control approach. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Automatica Elsevier

Asynchronous sliding mode control of Markovian jump systems with time-varying delays and partly accessible mode detection probabilities

Loading next page...
 
/lp/elsevier/asynchronous-sliding-mode-control-of-markovian-jump-systems-with-time-isEUyvhZfI
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0005-1098
D.O.I.
10.1016/j.automatica.2018.03.037
Publisher site
See Article on Publisher Site

Abstract

In this work, the problem of asynchronous sliding mode control (SMC) is investigated for a class of uncertain Markovian jump systems (MJSs) with time-varying delays and stochastic perturbation. It is assumed that the system modes cannot be obtained synchronously by the controller, but instead there is a detector that provides estimated values of the system modes. This asynchronous phenomenon between the system modes and controller modes will be described in this work via a hidden Markov model with partly accessible mode detection probabilities. Based on a common sliding surface, an asynchronous SMC law depending on the detector mode is synthesized to ensure the mean square stability of the sliding mode dynamics and the reachability of the specified sliding surface simultaneously. Moreover, a design algorithm for obtaining the asynchronous SMC law is established. Finally, an application of the automotive electronic throttle system is provided to illustrate the effectiveness and advantages of the proposed asynchronous sliding mode control approach.

Journal

AutomaticaElsevier

Published: Jul 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off