Assessment of environmental and health risks in former polymetallic ore mining and smelting area, Slovakia: Spatial distribution and accumulation of mercury in four different ecosystems

Assessment of environmental and health risks in former polymetallic ore mining and smelting area,... Former long-term mining and smelting of pollymetallic ores in the Middle Spiš area caused a serious contamination problem of the environment with heavy metals and metalloids, especially mercury (Hg). Several studies have reported concentration of Hg in the area but this paper provides first detailed characterization of Hg contamination of different environmental components in agricultural, forest, grassland and urban ecosystems. The ecosystems are in different distances from emission sources – former mercury and copper smelting plants in NE Slovakia. Total Hg content was studied in soil/substrate samples (n = 234) and characteristic biological samples (Athyrium filix-femina (L.) Roth, Macrolepiota procera (Scop.) Singer, Boletus edulis Bull., Cyanoboletus pulverulentus (Opat.) Gelardi, Vizzini & Simonini, Triticum aestivum (L.), Poa pratensis (L.)) (n = 234) collected in the above-mentioned ecosystems. The level of contamination and environmental risks were assessed by contamination factor (Cf), index of geoaccumulation (Igeo) and potential environmental risk index (PER). To determine the level of transition of Hg from abiotic to biotic environment, bioconcentration factor (BCF) was used. To determine a health risk resulting from regular and long-term consumption of the locally available species, the results of the Hg content were compared with the Provisional Tolerable Weekly Intake (PTWI) for Hg defined by World Health Organization. The results suggest that almost 63% of the area belong to the very high risk category and 80% of the sampling sites shown very high contamination factor. Geoaccumulation index showed that almost 30% of the area is very strongly contaminated and only 8% is not contaminated with Hg. Spearman's correlation relationship confirmed that the values of PER, BCF, Cf and Igeo decreased with an increasing distance from the pollution source. The percentage of contribution to PTWI ranged between 5.76–69.0% for adults and 11.5–138% for children. Mushroom M. procera showed the highest %PTWI among the tested biological samples. Studied ecotoxicological parameters showed high level of health risk for population living in the area. Consumption of the crops grown in the area and mainly edible wild mushrooms might negatively affect the health of the consumers in the long-term. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecotoxicology and Environmental Safety Elsevier

Assessment of environmental and health risks in former polymetallic ore mining and smelting area, Slovakia: Spatial distribution and accumulation of mercury in four different ecosystems

Loading next page...
 
/lp/elsevier/assessment-of-environmental-and-health-risks-in-former-polymetallic-9qAGBQQZi7
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Inc.
ISSN
0147-6513
eISSN
1090-2414
D.O.I.
10.1016/j.ecoenv.2017.06.020
Publisher site
See Article on Publisher Site

Abstract

Former long-term mining and smelting of pollymetallic ores in the Middle Spiš area caused a serious contamination problem of the environment with heavy metals and metalloids, especially mercury (Hg). Several studies have reported concentration of Hg in the area but this paper provides first detailed characterization of Hg contamination of different environmental components in agricultural, forest, grassland and urban ecosystems. The ecosystems are in different distances from emission sources – former mercury and copper smelting plants in NE Slovakia. Total Hg content was studied in soil/substrate samples (n = 234) and characteristic biological samples (Athyrium filix-femina (L.) Roth, Macrolepiota procera (Scop.) Singer, Boletus edulis Bull., Cyanoboletus pulverulentus (Opat.) Gelardi, Vizzini & Simonini, Triticum aestivum (L.), Poa pratensis (L.)) (n = 234) collected in the above-mentioned ecosystems. The level of contamination and environmental risks were assessed by contamination factor (Cf), index of geoaccumulation (Igeo) and potential environmental risk index (PER). To determine the level of transition of Hg from abiotic to biotic environment, bioconcentration factor (BCF) was used. To determine a health risk resulting from regular and long-term consumption of the locally available species, the results of the Hg content were compared with the Provisional Tolerable Weekly Intake (PTWI) for Hg defined by World Health Organization. The results suggest that almost 63% of the area belong to the very high risk category and 80% of the sampling sites shown very high contamination factor. Geoaccumulation index showed that almost 30% of the area is very strongly contaminated and only 8% is not contaminated with Hg. Spearman's correlation relationship confirmed that the values of PER, BCF, Cf and Igeo decreased with an increasing distance from the pollution source. The percentage of contribution to PTWI ranged between 5.76–69.0% for adults and 11.5–138% for children. Mushroom M. procera showed the highest %PTWI among the tested biological samples. Studied ecotoxicological parameters showed high level of health risk for population living in the area. Consumption of the crops grown in the area and mainly edible wild mushrooms might negatively affect the health of the consumers in the long-term.

Journal

Ecotoxicology and Environmental SafetyElsevier

Published: Oct 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off