Artefact detection in global digital elevation models (DEMs): The Maximum Slope Approach and its application for complete screening of the SRTM v4.1 and MERIT DEMs

Artefact detection in global digital elevation models (DEMs): The Maximum Slope Approach and its... Despite post-processing efforts by space agencies and research institutions, contemporary global digital elevation models (DEMs) may contain artefacts, i.e., erroneous features that do not exist in the actual terrain, such as spikes, holes and line errors. The goal of the present paper is to illuminate the artefact issue of current global DEM data sets that might be an obstacle for any geoscience study using terrain information. We introduce the Maximum Slope Approach (MSA) as a technique that uses terrain slopes as indicator to detect and localize spurious artefacts. The MSA relies on the strong sensitivity of terrain slopes for sudden steps in the DEM that is a direct feature of larger artefacts. In a numerical case study, the MSA is applied for globally complete screening of two SRTM-based 3 arc-second DEMs, the SRTM v4.1 and the MERIT-DEM. Based on 0.1° × 0.1° sub-divisions and a 5 m/m slope threshold, 1341 artefacts were detected in SRTM v4.1 vs. 108 in MERIT. Most artefacts spatially correlate with SRTM voids (and thus with the void-filling) and not with the SRTM-measured elevations. The strong contrast in artefact frequency (factor ~12) is attributed to the SRTM v4.1 hole filling. Our study shows that over parts of the Himalaya Mountains the SRTM v4.1 data set is contaminated by step artefacts where the use of this DEM cannot be recommended. Some caution should be exercised, e.g., over parts of the Andes and Rocky Mountains. The same holds true for derived global products that depend on SRTM v4.1, such as gravity maps. Primarily over the major mountain ranges, the MERIT model contains artefacts, too, but in smaller numbers. As a conclusion, globally complete artefact screening is recommended prior to the public release of any DEM data set. However, such a quality check should also be considered by users before using DEM data. MSA-based artefact screening is not only limited to DEMs, but can be applied as quality assurance measure to other gridded data sets such as digital bathymetric models or gridded physical quantities such as gravity or magnetics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Remote Sensing of Environment Elsevier

Artefact detection in global digital elevation models (DEMs): The Maximum Slope Approach and its application for complete screening of the SRTM v4.1 and MERIT DEMs

Loading next page...
 
/lp/elsevier/artefact-detection-in-global-digital-elevation-models-dems-the-maximum-p30iU9B168
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0034-4257
D.O.I.
10.1016/j.rse.2017.12.037
Publisher site
See Article on Publisher Site

Abstract

Despite post-processing efforts by space agencies and research institutions, contemporary global digital elevation models (DEMs) may contain artefacts, i.e., erroneous features that do not exist in the actual terrain, such as spikes, holes and line errors. The goal of the present paper is to illuminate the artefact issue of current global DEM data sets that might be an obstacle for any geoscience study using terrain information. We introduce the Maximum Slope Approach (MSA) as a technique that uses terrain slopes as indicator to detect and localize spurious artefacts. The MSA relies on the strong sensitivity of terrain slopes for sudden steps in the DEM that is a direct feature of larger artefacts. In a numerical case study, the MSA is applied for globally complete screening of two SRTM-based 3 arc-second DEMs, the SRTM v4.1 and the MERIT-DEM. Based on 0.1° × 0.1° sub-divisions and a 5 m/m slope threshold, 1341 artefacts were detected in SRTM v4.1 vs. 108 in MERIT. Most artefacts spatially correlate with SRTM voids (and thus with the void-filling) and not with the SRTM-measured elevations. The strong contrast in artefact frequency (factor ~12) is attributed to the SRTM v4.1 hole filling. Our study shows that over parts of the Himalaya Mountains the SRTM v4.1 data set is contaminated by step artefacts where the use of this DEM cannot be recommended. Some caution should be exercised, e.g., over parts of the Andes and Rocky Mountains. The same holds true for derived global products that depend on SRTM v4.1, such as gravity maps. Primarily over the major mountain ranges, the MERIT model contains artefacts, too, but in smaller numbers. As a conclusion, globally complete artefact screening is recommended prior to the public release of any DEM data set. However, such a quality check should also be considered by users before using DEM data. MSA-based artefact screening is not only limited to DEMs, but can be applied as quality assurance measure to other gridded data sets such as digital bathymetric models or gridded physical quantities such as gravity or magnetics.

Journal

Remote Sensing of EnvironmentElsevier

Published: Mar 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off