Arsenic mobility and characterization in lakes impacted by gold ore roasting, Yellowknife, NWT, Canada

Arsenic mobility and characterization in lakes impacted by gold ore roasting, Yellowknife, NWT,... The controls on the mobility and fate of arsenic in lakes impacted by historical gold ore roasting in northern Canada have been examined. A detailed characterization of arsenic solid and aqueous phases in lake waters, lake sediments and sediment porewaters as well as surrounding soils was conducted in three small lakes (<200ha) downwind and within 5 km of the historic mining and roasting operations of Giant Mine (Northwest Territories). These lakes are marked by differing limnological characteristics such as area, depth and organic content. Radiometric age-dating shows that the occurrence of arsenic trioxide in lake sediments coincides with the regional onset of roasting activities. Quantification by advanced electron microscopy shows that arsenic trioxide accounts for up to 6 wt% of the total arsenic in sediments. The bulk (>80 wt%) of arsenic is contained in the form of secondary sulphide precipitates, with iron oxy-hydroxides hosting a minimal amount of arsenic (<1 wt%). Soluble arsenic trioxide particles act as the primary source of arsenic into sediment porewaters. Dissolved arsenic in reducing porewaters both precipitates in-situ as secondary sulphides, and diffuses upwards into the overlying lake waters. Geogenic arsenic phases are present in sediments in low concentrations and are not considered a significant source of arsenic to porewaters or lake waters. Sediment-water interface diffusive flux calculations suggest that the diffusion of dissolved arsenic from porewaters, combined with lake water residence time, are the predominant mechanisms controlling arsenic concentrations in lake waters. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Arsenic mobility and characterization in lakes impacted by gold ore roasting, Yellowknife, NWT, Canada

Loading next page...
 
/lp/elsevier/arsenic-mobility-and-characterization-in-lakes-impacted-by-gold-ore-qGK8U01vwm
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.11.062
Publisher site
See Article on Publisher Site

Abstract

The controls on the mobility and fate of arsenic in lakes impacted by historical gold ore roasting in northern Canada have been examined. A detailed characterization of arsenic solid and aqueous phases in lake waters, lake sediments and sediment porewaters as well as surrounding soils was conducted in three small lakes (<200ha) downwind and within 5 km of the historic mining and roasting operations of Giant Mine (Northwest Territories). These lakes are marked by differing limnological characteristics such as area, depth and organic content. Radiometric age-dating shows that the occurrence of arsenic trioxide in lake sediments coincides with the regional onset of roasting activities. Quantification by advanced electron microscopy shows that arsenic trioxide accounts for up to 6 wt% of the total arsenic in sediments. The bulk (>80 wt%) of arsenic is contained in the form of secondary sulphide precipitates, with iron oxy-hydroxides hosting a minimal amount of arsenic (<1 wt%). Soluble arsenic trioxide particles act as the primary source of arsenic into sediment porewaters. Dissolved arsenic in reducing porewaters both precipitates in-situ as secondary sulphides, and diffuses upwards into the overlying lake waters. Geogenic arsenic phases are present in sediments in low concentrations and are not considered a significant source of arsenic to porewaters or lake waters. Sediment-water interface diffusive flux calculations suggest that the diffusion of dissolved arsenic from porewaters, combined with lake water residence time, are the predominant mechanisms controlling arsenic concentrations in lake waters.

Journal

Environmental PollutionElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off