Arsenic characteristics in the terrestrial environment in the vicinity of the Shimen realgar mine, China

Arsenic characteristics in the terrestrial environment in the vicinity of the Shimen realgar... In this study, multiple types of samples, including soils, plants, litter and soil invertebrates, were collected from a former arsenic (As) mine in China. The total As concentrations in the soils, earthworms, litter and the aboveground portions of grass from the contaminated area followed the decreasing order of 83–2224 mg/kg, 31–430 mg/kg, 1–62 mg/kg and 2–23 mg/kg, respectively. X-ray absorption near-edge structure (XANES) analysis revealed that the predominant form of As in the soils was arsenate (As(V)), while no arsenite (As(III)) was detected. In the grass and litter of the native plant community, inorganic As species (As(V) and As(III)) were the main species, while minor amounts of DMA, MMA, AsC, and an unknown As species were also detected in the extracts analyzed with high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP-MS). The As speciation and As concentrations varied with the plant species, and very high As levels (197–584 mg/kg) and proportions of inorganic As (>99%) were found in two As-hyperaccumulating ferns, Pteris vittata and Pteris cretica. The major As species extracted from earthworms were inorganic, with proportions of 51–53% As(III) and 38–48% As(V). AsB was the only organic species present in the earthworm samples, although at low proportions (<8.99%). The internal bioconversion of other As species is hypothesized to contribute greatly to the formation and accumulation of AsB in earthworms, although the direct external absorption of organic As from soils might be another source. This study sheds light on the potential sources of complex organoarsenicals, such as AsB, in terrestrial organisms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Arsenic characteristics in the terrestrial environment in the vicinity of the Shimen realgar mine, China

Loading next page...
 
/lp/elsevier/arsenic-characteristics-in-the-terrestrial-environment-in-the-vicinity-6evNUXv7cH
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2018.01.079
Publisher site
See Article on Publisher Site

Abstract

In this study, multiple types of samples, including soils, plants, litter and soil invertebrates, were collected from a former arsenic (As) mine in China. The total As concentrations in the soils, earthworms, litter and the aboveground portions of grass from the contaminated area followed the decreasing order of 83–2224 mg/kg, 31–430 mg/kg, 1–62 mg/kg and 2–23 mg/kg, respectively. X-ray absorption near-edge structure (XANES) analysis revealed that the predominant form of As in the soils was arsenate (As(V)), while no arsenite (As(III)) was detected. In the grass and litter of the native plant community, inorganic As species (As(V) and As(III)) were the main species, while minor amounts of DMA, MMA, AsC, and an unknown As species were also detected in the extracts analyzed with high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP-MS). The As speciation and As concentrations varied with the plant species, and very high As levels (197–584 mg/kg) and proportions of inorganic As (>99%) were found in two As-hyperaccumulating ferns, Pteris vittata and Pteris cretica. The major As species extracted from earthworms were inorganic, with proportions of 51–53% As(III) and 38–48% As(V). AsB was the only organic species present in the earthworm samples, although at low proportions (<8.99%). The internal bioconversion of other As species is hypothesized to contribute greatly to the formation and accumulation of AsB in earthworms, although the direct external absorption of organic As from soils might be another source. This study sheds light on the potential sources of complex organoarsenicals, such as AsB, in terrestrial organisms.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial