Arabidopsis calcium-dependent protein kinase AtCPK1 plays a positive role in salt/drought-stress response

Arabidopsis calcium-dependent protein kinase AtCPK1 plays a positive role in salt/drought-stress... The calcium-dependent protein kinases (CDPKs) play vital roles in plant response to various environmental stimuli. Here, we investigated the function of Arabidopsis AtCPK1 in response to salt and drought stress. The loss-of-function cpk1 mutant displayed hypersensitive to salt and drought stress, whereas overexpressing AtCPK1 in Arabidopsis plants significantly enhanced the resistance to salt or drought stress. The reduced or elevated tolerance of cpk1 mutant and AtCPK1-overexpressing lines was confirmed by the changes of proline, malondialdehyde (MDA) and H2O2. Real-time PCR analysis revealed that the expression of several stress-inducible genes (RD29A, COR15A, ZAT10, APX2) down-regulated in cpk1 mutant and up-regulated in AtCPK1-overexpressing plants. These results are likely to indicate that AtCPK1 positively regulates salt and drought stress in Arabidopsis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochemical and Biophysical Research Communications Elsevier

Arabidopsis calcium-dependent protein kinase AtCPK1 plays a positive role in salt/drought-stress response

Loading next page...
 
/lp/elsevier/arabidopsis-calcium-dependent-protein-kinase-atcpk1-plays-a-positive-9hYRB06Ty0
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Inc.
ISSN
0006-291x
D.O.I.
10.1016/j.bbrc.2017.11.175
Publisher site
See Article on Publisher Site

Abstract

The calcium-dependent protein kinases (CDPKs) play vital roles in plant response to various environmental stimuli. Here, we investigated the function of Arabidopsis AtCPK1 in response to salt and drought stress. The loss-of-function cpk1 mutant displayed hypersensitive to salt and drought stress, whereas overexpressing AtCPK1 in Arabidopsis plants significantly enhanced the resistance to salt or drought stress. The reduced or elevated tolerance of cpk1 mutant and AtCPK1-overexpressing lines was confirmed by the changes of proline, malondialdehyde (MDA) and H2O2. Real-time PCR analysis revealed that the expression of several stress-inducible genes (RD29A, COR15A, ZAT10, APX2) down-regulated in cpk1 mutant and up-regulated in AtCPK1-overexpressing plants. These results are likely to indicate that AtCPK1 positively regulates salt and drought stress in Arabidopsis.

Journal

Biochemical and Biophysical Research CommunicationsElsevier

Published: Mar 25, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off