Approaching the upper bound of load capacity: Functional grading with interpenetrating polymer networks

Approaching the upper bound of load capacity: Functional grading with interpenetrating polymer... Functional grading is used to push the load capacity of parts to within the upper bound of what is theoretically possible. Using interpenetrating polymer networks (IPNs), a material system used to achieve grading during printing, the possibility of producing realistic grading of acrylate/epoxy IPNs is studied with the goal of increasing load capacity to within the limit of what is possible, and substantially beyond the load capacity possible with any uniform mixture of this IPN system. In the process, an upper bound of possible improvement is established for a plate with a circular hole in tensions, and the grading for this plate is adjusted to give an optimal load capacity near this upper bound. The optimal grading proposed is different from that shown in previous work due to the simultaneous consideration of both the effect of grading on elastic moduli and on the ultimate stress. A similar study was done for an L-shaped bracket indicating similar improvements over uniform brackets. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Materials & design Elsevier

Approaching the upper bound of load capacity: Functional grading with interpenetrating polymer networks

Loading next page...
 
/lp/elsevier/approaching-the-upper-bound-of-load-capacity-functional-grading-with-m0g5vbdxD3
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0264-1275
eISSN
0141-5530
D.O.I.
10.1016/j.matdes.2017.10.019
Publisher site
See Article on Publisher Site

Abstract

Functional grading is used to push the load capacity of parts to within the upper bound of what is theoretically possible. Using interpenetrating polymer networks (IPNs), a material system used to achieve grading during printing, the possibility of producing realistic grading of acrylate/epoxy IPNs is studied with the goal of increasing load capacity to within the limit of what is possible, and substantially beyond the load capacity possible with any uniform mixture of this IPN system. In the process, an upper bound of possible improvement is established for a plate with a circular hole in tensions, and the grading for this plate is adjusted to give an optimal load capacity near this upper bound. The optimal grading proposed is different from that shown in previous work due to the simultaneous consideration of both the effect of grading on elastic moduli and on the ultimate stress. A similar study was done for an L-shaped bracket indicating similar improvements over uniform brackets.

Journal

Materials & designElsevier

Published: Jan 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off