Apoplastic and symplastic uptake of phenanthrene in wheat roots

Apoplastic and symplastic uptake of phenanthrene in wheat roots The contamination of agricultural crops by polycyclic aromatic hydrocarbons (PAHs) has drawn considerable attention due to their carcinogenicity, mutagenicity, and toxicity. However, the uptake process of PAHs in plant roots has not been clearly understood. In this work, we first study the radial uptake of phenanthrene in hydroculture wheat roots by vacuum-infiltration-centrifugation method. The concentration-dependent kinetics of apoplastic and symplastic uptake at phenanthrene concentrations of 0–6.72 μM for 4 h can be described with the Langmuir and Michaelis-Menten equations, respectively; whereas, their time-dependent kinetics at 5.60 μM phenanthrene for 36 h follow the Elovich equation. The apoplastic and symplastic uptake increases with temperature of 15–35 °C. The apparent Arrhenius activation energies for apoplastic and symplastic uptake are 77.5 and 9.39 KJ mol−1, respectively. The symplastic uptake accounts for over 55% of total phenanthrene uptake, suggesting that symplast is the dominant pathway for wheat root phenanthrene uptake. Larger volume of symplast in roots and lower activation energy lead to the greater contribution of symplast to total uptake of phenanthrene. Our results provide not only novel insights into the mechanisms on the uptake of PAHs by plant roots, but also the help to optimize strategies for crop safety and phytoremediation of PAH-contaminated soil/water. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Transportation Research Part C: Emerging Technologies Elsevier

Loading next page...
 
/lp/elsevier/apoplastic-and-symplastic-uptake-of-phenanthrene-in-wheat-roots-HFUCsGFAD6
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0968-090X
D.O.I.
10.1016/j.envpol.2017.10.056
Publisher site
See Article on Publisher Site

Abstract

The contamination of agricultural crops by polycyclic aromatic hydrocarbons (PAHs) has drawn considerable attention due to their carcinogenicity, mutagenicity, and toxicity. However, the uptake process of PAHs in plant roots has not been clearly understood. In this work, we first study the radial uptake of phenanthrene in hydroculture wheat roots by vacuum-infiltration-centrifugation method. The concentration-dependent kinetics of apoplastic and symplastic uptake at phenanthrene concentrations of 0–6.72 μM for 4 h can be described with the Langmuir and Michaelis-Menten equations, respectively; whereas, their time-dependent kinetics at 5.60 μM phenanthrene for 36 h follow the Elovich equation. The apoplastic and symplastic uptake increases with temperature of 15–35 °C. The apparent Arrhenius activation energies for apoplastic and symplastic uptake are 77.5 and 9.39 KJ mol−1, respectively. The symplastic uptake accounts for over 55% of total phenanthrene uptake, suggesting that symplast is the dominant pathway for wheat root phenanthrene uptake. Larger volume of symplast in roots and lower activation energy lead to the greater contribution of symplast to total uptake of phenanthrene. Our results provide not only novel insights into the mechanisms on the uptake of PAHs by plant roots, but also the help to optimize strategies for crop safety and phytoremediation of PAH-contaminated soil/water.

Journal

Transportation Research Part C: Emerging TechnologiesElsevier

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off