Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO 2 coatings on titanium

Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO 2... In this work, zinc was incorporated into TiO 2 coatings on titanium by plasma electrolytic oxidation to obtain the implant with good bacterial inhibition ability and bone-formability. The porous and nanostructured Zn-incorporated TiO 2 coatings are built up from pores smaller than 5 μm and grains 20–100 nm in size, in which the element Zn exists as ZnO. The results obtained from the antibacterial studies suggest that the Zn-incorporated TiO 2 coatings can greatly inhibit the growth of both Staphylococcus aureus and Escherichia coli , and the ability to inhibit bacteria can be improved by increasing the Zn content in the coatings. Moreover, the in vitro cytocompatibility evaluation demonstrates that the adhesion, proliferation and differentiation of rat bone marrow stem cells (bMSC) on Zn-incorporated coatings are significantly enhanced compared with Zn-free coating and commercially pure Ti plate, and no cytotoxicity appeared on any of the Zn-incorporated TiO 2 coatings. Moreover, bMSC express higher level of alkaline phosphatase activity on Zn-incorporated TiO 2 coatings and are induced to differentiate into osteoblast cells. The better antibacterial activity, cytocompatibility and the capability to promote bMSC osteogenic differentiation of Zn-incorporated TiO 2 coatings may be attributed to the fact that Zn ions can be slowly and constantly released from the coatings. In conclusion, innovative Zn-incorporated TiO 2 coatings on titanium with excellent antibacterial activity and biocompatibility are promising candidates for orthopedic and dental implants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Biomaterialia Elsevier

Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO 2 coatings on titanium

Loading next page...
 
/lp/elsevier/antibacterial-activity-and-increased-bone-marrow-stem-cell-functions-RGlnktnDpP
Publisher
Elsevier
Copyright
Copyright © 2011 Acta Materialia Inc.
ISSN
1742-7061
eISSN
1878-7568
D.O.I.
10.1016/j.actbio.2011.09.031
Publisher site
See Article on Publisher Site

Abstract

In this work, zinc was incorporated into TiO 2 coatings on titanium by plasma electrolytic oxidation to obtain the implant with good bacterial inhibition ability and bone-formability. The porous and nanostructured Zn-incorporated TiO 2 coatings are built up from pores smaller than 5 μm and grains 20–100 nm in size, in which the element Zn exists as ZnO. The results obtained from the antibacterial studies suggest that the Zn-incorporated TiO 2 coatings can greatly inhibit the growth of both Staphylococcus aureus and Escherichia coli , and the ability to inhibit bacteria can be improved by increasing the Zn content in the coatings. Moreover, the in vitro cytocompatibility evaluation demonstrates that the adhesion, proliferation and differentiation of rat bone marrow stem cells (bMSC) on Zn-incorporated coatings are significantly enhanced compared with Zn-free coating and commercially pure Ti plate, and no cytotoxicity appeared on any of the Zn-incorporated TiO 2 coatings. Moreover, bMSC express higher level of alkaline phosphatase activity on Zn-incorporated TiO 2 coatings and are induced to differentiate into osteoblast cells. The better antibacterial activity, cytocompatibility and the capability to promote bMSC osteogenic differentiation of Zn-incorporated TiO 2 coatings may be attributed to the fact that Zn ions can be slowly and constantly released from the coatings. In conclusion, innovative Zn-incorporated TiO 2 coatings on titanium with excellent antibacterial activity and biocompatibility are promising candidates for orthopedic and dental implants.

Journal

Acta BiomaterialiaElsevier

Published: Feb 1, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off