Analytical solution for bending and buckling analysis of functionally graded plates using inverse trigonometric shear deformation theory

Analytical solution for bending and buckling analysis of functionally graded plates using inverse... Functionally graded materials have become more popular in recent decades due to its ability of efficient utilization of the constituents materials. The structural functionally graded plate (FGP) has variation of the properties in the thickness direction according to power law or exponential law. A recently developed non-polynomial shear deformation theory named as inverse trigonometric shear deformation theory (ITSDT) has proved its accuracy and efficiency in modeling and analyses of laminated composite and sandwich structures. However, its efficiency for the FGP has not examined so far in the literature. In the present study, an attempt is made to extend ITSDT for the static and buckling analysis of FGP. An analytical solution for all edges simply supported FGP is proposed in this work. The bending analysis includes calculation of in-plane and transverse displacements, along with the calculation of in-plane and transverse normal and shear stresses. The buckling analysis includes calculation of critical buckling load for various conditions. Also, the effect of power index, aspect ratio, span to thickness ratio, uniaxial and biaxial loading are studied. From the results, it is observed that the theory accurately predicts the static and buckling responses of FGP. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

Analytical solution for bending and buckling analysis of functionally graded plates using inverse trigonometric shear deformation theory

Loading next page...
 
/lp/elsevier/analytical-solution-for-bending-and-buckling-analysis-of-functionally-Q0MltL5UQN
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2015.08.060
Publisher site
See Article on Publisher Site

Abstract

Functionally graded materials have become more popular in recent decades due to its ability of efficient utilization of the constituents materials. The structural functionally graded plate (FGP) has variation of the properties in the thickness direction according to power law or exponential law. A recently developed non-polynomial shear deformation theory named as inverse trigonometric shear deformation theory (ITSDT) has proved its accuracy and efficiency in modeling and analyses of laminated composite and sandwich structures. However, its efficiency for the FGP has not examined so far in the literature. In the present study, an attempt is made to extend ITSDT for the static and buckling analysis of FGP. An analytical solution for all edges simply supported FGP is proposed in this work. The bending analysis includes calculation of in-plane and transverse displacements, along with the calculation of in-plane and transverse normal and shear stresses. The buckling analysis includes calculation of critical buckling load for various conditions. Also, the effect of power index, aspect ratio, span to thickness ratio, uniaxial and biaxial loading are studied. From the results, it is observed that the theory accurately predicts the static and buckling responses of FGP.

Journal

Composite StructuresElsevier

Published: Dec 15, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off