Analytic tractography: A closed-form solution for estimating local white matter connectivity with diffusion MRI

Analytic tractography: A closed-form solution for estimating local white matter connectivity with... White matter structures composed of myelinated axons in the living human brain are primarily studied by diffusion-weighted MRI (dMRI). These long-range projections are typically characterized in a two-step process: dMRI signal is used to estimate the orientation of axon segments within each voxel, then these local orientations are linked together to estimate the spatial extent of putative white matter bundles. Tractography, the process of tracing bundles across voxels, either requires computationally expensive (probabilistic) simulations to model uncertainty in fiber orientation or ignores it completely (deterministic). Furthermore, simulation necessarily generates a finite number of trajectories, introducing “simulation error” to trajectory estimates. Here we introduce a method to analytically (via a closed-form solution) take an orientation distribution function (ODF) from each voxel and calculate the probabilities that a trajectory projects from a voxel into each directly adjacent voxels. We validate our method by demonstrating experimentally that probabilistic simulations converge to our analytically computed transition probabilities at the voxel level as the number of simulated seeds increases. We then show that our method accurately calculates the ground-truth transition probabilities from a publicly available phantom dataset. As a demonstration, we incorporate our analytic method for voxel transition probabilities into the Voxel Graph framework, creating a quantitative framework for assessing white matter structure, which we call “analytic tractography”. The long-range connectivity problem is reduced to finding paths in a graph whose adjacency structure reflects voxel-to-voxel analytic transition probabilities. We demonstrate that this approach performs comparably to the current most widely-used probabilistic and deterministic approaches at a fraction of the computational cost. We also demonstrate that analytic tractography works on multiple diffusion sampling schemes, reconstruction method or parameters used to define paths. Open source software compatible with popular dMRI reconstruction software is provided. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroimage Elsevier

Analytic tractography: A closed-form solution for estimating local white matter connectivity with diffusion MRI

Loading next page...
 
/lp/elsevier/analytic-tractography-a-closed-form-solution-for-estimating-local-P0kZWM9kRU
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Inc.
ISSN
1053-8119
eISSN
1095-9572
D.O.I.
10.1016/j.neuroimage.2017.12.039
Publisher site
See Article on Publisher Site

Abstract

White matter structures composed of myelinated axons in the living human brain are primarily studied by diffusion-weighted MRI (dMRI). These long-range projections are typically characterized in a two-step process: dMRI signal is used to estimate the orientation of axon segments within each voxel, then these local orientations are linked together to estimate the spatial extent of putative white matter bundles. Tractography, the process of tracing bundles across voxels, either requires computationally expensive (probabilistic) simulations to model uncertainty in fiber orientation or ignores it completely (deterministic). Furthermore, simulation necessarily generates a finite number of trajectories, introducing “simulation error” to trajectory estimates. Here we introduce a method to analytically (via a closed-form solution) take an orientation distribution function (ODF) from each voxel and calculate the probabilities that a trajectory projects from a voxel into each directly adjacent voxels. We validate our method by demonstrating experimentally that probabilistic simulations converge to our analytically computed transition probabilities at the voxel level as the number of simulated seeds increases. We then show that our method accurately calculates the ground-truth transition probabilities from a publicly available phantom dataset. As a demonstration, we incorporate our analytic method for voxel transition probabilities into the Voxel Graph framework, creating a quantitative framework for assessing white matter structure, which we call “analytic tractography”. The long-range connectivity problem is reduced to finding paths in a graph whose adjacency structure reflects voxel-to-voxel analytic transition probabilities. We demonstrate that this approach performs comparably to the current most widely-used probabilistic and deterministic approaches at a fraction of the computational cost. We also demonstrate that analytic tractography works on multiple diffusion sampling schemes, reconstruction method or parameters used to define paths. Open source software compatible with popular dMRI reconstruction software is provided.

Journal

NeuroimageElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off