Analysis of the sensitivity of heart rate variability and subjective workload measures in a driving simulator: The case of highway work zones

Analysis of the sensitivity of heart rate variability and subjective workload measures in a... Heart rate variability and subjective workload measures are extensively used to determine workload during driving. However, the sensitivity of heart rate and workload measurements in simulated driving environments is mostly unknown and can significantly affect the experiment results. The objectives of this paper are to determine how heart rate variability and subjective workload are affected in simulated highway work zones and study the relationship between heart rate variability, subjective workload, and driving performance indicators in simulated driving environments. Conventional lane merge (CLM), joint lane merge (JLM) and a road with no work zone are modeled with high and low traffic densities in a full-size driving simulator. NASA-TLX subjective workload measures and heart rate variability measures of root mean square of successive heartbeat differences (RMSSD), low frequency (LF), high frequency (HF) and the ratio of low frequency to high frequency (LF/HF) are collected in 30 participants. Variability in steering angle, braking and speed are used as driving performance indicators. Results show that compared to no work zone, participants experienced higher mental, temporal, and overall workload in the CLM scenario and poorer driving performance ratings in the CLM and JLM scenarios. All workload measures except for performance were higher with high traffic density. However, heart rate variability measures were not sensitive to the differences in driving scenarios and traffic densities. Pearson correlation coefficients indicated an association between RMSSD and all the subjective workload measures (r > 0.21) except performance, and between LF, HF, and LF/HF ratio and mental workload (r > 0.21). Steering angle variability was slightly correlated with LF, HF, and LF/HF ratio (r > 0.16), but brake and speed variability were not associated with physiological outcomes.In conclusion, the subjective workload was higher in simulated work zones and under higher traffic density, but heart rate measures were largely unaffected. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Industrial Ergonomics Elsevier

Analysis of the sensitivity of heart rate variability and subjective workload measures in a driving simulator: The case of highway work zones

Loading next page...
 
/lp/elsevier/analysis-of-the-sensitivity-of-heart-rate-variability-and-subjective-DiiU8UYXrg
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0169-8141
eISSN
1872-8219
D.O.I.
10.1016/j.ergon.2018.02.015
Publisher site
See Article on Publisher Site

Abstract

Heart rate variability and subjective workload measures are extensively used to determine workload during driving. However, the sensitivity of heart rate and workload measurements in simulated driving environments is mostly unknown and can significantly affect the experiment results. The objectives of this paper are to determine how heart rate variability and subjective workload are affected in simulated highway work zones and study the relationship between heart rate variability, subjective workload, and driving performance indicators in simulated driving environments. Conventional lane merge (CLM), joint lane merge (JLM) and a road with no work zone are modeled with high and low traffic densities in a full-size driving simulator. NASA-TLX subjective workload measures and heart rate variability measures of root mean square of successive heartbeat differences (RMSSD), low frequency (LF), high frequency (HF) and the ratio of low frequency to high frequency (LF/HF) are collected in 30 participants. Variability in steering angle, braking and speed are used as driving performance indicators. Results show that compared to no work zone, participants experienced higher mental, temporal, and overall workload in the CLM scenario and poorer driving performance ratings in the CLM and JLM scenarios. All workload measures except for performance were higher with high traffic density. However, heart rate variability measures were not sensitive to the differences in driving scenarios and traffic densities. Pearson correlation coefficients indicated an association between RMSSD and all the subjective workload measures (r > 0.21) except performance, and between LF, HF, and LF/HF ratio and mental workload (r > 0.21). Steering angle variability was slightly correlated with LF, HF, and LF/HF ratio (r > 0.16), but brake and speed variability were not associated with physiological outcomes.In conclusion, the subjective workload was higher in simulated work zones and under higher traffic density, but heart rate measures were largely unaffected.

Journal

International Journal of Industrial ErgonomicsElsevier

Published: Jul 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off