Analysis of population structure and genetic diversity in an exotic germplasm collection of Eleusine coracana (L.) Gaertn. using genic-SSR markers

Analysis of population structure and genetic diversity in an exotic germplasm collection of... Finger millet (Eleusine coracana (L.) Geartn.) is one of the important small millets serves as a food security crop because of its high nutritional values. The complex tetraploid genome of finger millet requires a large number of informative, functional DNA markers for different applications in genetics and breeding. Yet, less number of simple sequence repeat (SSR) markers have been developed from expressed sequence tags in finger millet. In the present study, 56 new genic SSR markers were developed from publicly available drought related ESTs. The 43 polymorphic markers were used to evaluate polymorphism, revealed a range of PIC value 0.41 to 0.79. Our results suggest that, analyzed genotypes have high genetic diversity with an average gene diversity (h) of 0.176 and Shannon's information index (I) of 0.315. We conclude that there was a higher gene exchange within populations, by the value of overall gene flow (Nm) of 0.7721. The unweighted pair group method with arithmetic mean and neighbor joining dendrogram generated three main clusters to differentiate genotypes and these results were also confirmed by PCA and PCoA analysis. The high genetic diversity (77%) was found within the populations in the analysis of molecular variance. A Bayesian model-based cluster analysis evidenced a high extent of admixture between the gene pools from the different geographical origins. Population based cluster analyses pointed out a strong pattern of ‘isolation by distance’. Overall, these results underscored that this study showed a significantly high level of polymorphism, adequate genetic diversity and population structure which expand the modern genetic resources and its utility in various applications in genetics and genomics including association mapping and breeding. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Gene Elsevier

Analysis of population structure and genetic diversity in an exotic germplasm collection of Eleusine coracana (L.) Gaertn. using genic-SSR markers

Loading next page...
 
/lp/elsevier/analysis-of-population-structure-and-genetic-diversity-in-an-exotic-FxnZ1mpzt0
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0378-1119
eISSN
1879-0038
D.O.I.
10.1016/j.gene.2018.02.018
Publisher site
See Article on Publisher Site

Abstract

Finger millet (Eleusine coracana (L.) Geartn.) is one of the important small millets serves as a food security crop because of its high nutritional values. The complex tetraploid genome of finger millet requires a large number of informative, functional DNA markers for different applications in genetics and breeding. Yet, less number of simple sequence repeat (SSR) markers have been developed from expressed sequence tags in finger millet. In the present study, 56 new genic SSR markers were developed from publicly available drought related ESTs. The 43 polymorphic markers were used to evaluate polymorphism, revealed a range of PIC value 0.41 to 0.79. Our results suggest that, analyzed genotypes have high genetic diversity with an average gene diversity (h) of 0.176 and Shannon's information index (I) of 0.315. We conclude that there was a higher gene exchange within populations, by the value of overall gene flow (Nm) of 0.7721. The unweighted pair group method with arithmetic mean and neighbor joining dendrogram generated three main clusters to differentiate genotypes and these results were also confirmed by PCA and PCoA analysis. The high genetic diversity (77%) was found within the populations in the analysis of molecular variance. A Bayesian model-based cluster analysis evidenced a high extent of admixture between the gene pools from the different geographical origins. Population based cluster analyses pointed out a strong pattern of ‘isolation by distance’. Overall, these results underscored that this study showed a significantly high level of polymorphism, adequate genetic diversity and population structure which expand the modern genetic resources and its utility in various applications in genetics and genomics including association mapping and breeding.

Journal

GeneElsevier

Published: May 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off