Analysis of environmental endocrine disrupting chemicals using the E-screen method and stir bar sorptive extraction in wastewater treatment plant effluents

Analysis of environmental endocrine disrupting chemicals using the E-screen method and stir bar... Endocrine disrupting chemicals (EDCs) have become a major issue in the field of environmental science due to their ability to interfere with the endocrine system. Recent studies show that surface water is contaminated with EDCs, many released from wastewater treatment plants (WWTP). This pilot study used biological (E-screen assay) and chemical (stir bar sorptive extraction–GC–MS) analyses to quantify estrogenic activity in effluent water samples from a municipal WWTP and in water samples of the recipient river, upstream and downstream of the plant. The E-screen assay was performed on samples after solid phase extraction (SPE) to determine total estrogenic activity; the presence of estrogenic substances can be evaluated by measuring the 17-β-estradiol equivalency quantity (EEQ). Untreated samples were also assayed with an acute toxicity test ( Vibrio fischeri ) to study the correlation between toxicity and estrogenic disruption activity. Mean EEQs were 4.7 ng/L (± 2.7 ng/L) upstream and 4.4 ng/L (± 3.7 ng/L) downstream of the plant, and 11.1 ng/L (± 11.7 ng/L) in the effluent. In general the WWTP effluent had little impact on estrogenicity nor on the concentration of EDCs in the river water. The samples upstream and downstream of the plant were non-toxic or weakly toxic (0 < TU < 0.9) while the effluent was weakly toxic or toxic (0.4 < TU < 7.6). Toxicity and estrogenic activity were not correlated. At most sites, industrial mimics, such as the alkylphenols and phthalates, were present in higher concentrations than natural hormones. Although the concentrations of the detected xenoestrogens were generally higher than those of the steroids, they accounted for only a small fraction of the EEQ because of their low estrogenic potency. The EEQs resulting from the E-screen assay and those calculated from the results of chemical analyses using estradiol equivalency factors were comparable for all samples and closely correlated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Analysis of environmental endocrine disrupting chemicals using the E-screen method and stir bar sorptive extraction in wastewater treatment plant effluents

Loading next page...
 
/lp/elsevier/analysis-of-environmental-endocrine-disrupting-chemicals-using-the-e-DxgMNLfBxv
Publisher
Elsevier
Copyright
Copyright © 2008 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
DOI
10.1016/j.scitotenv.2008.11.039
Publisher site
See Article on Publisher Site

Abstract

Endocrine disrupting chemicals (EDCs) have become a major issue in the field of environmental science due to their ability to interfere with the endocrine system. Recent studies show that surface water is contaminated with EDCs, many released from wastewater treatment plants (WWTP). This pilot study used biological (E-screen assay) and chemical (stir bar sorptive extraction–GC–MS) analyses to quantify estrogenic activity in effluent water samples from a municipal WWTP and in water samples of the recipient river, upstream and downstream of the plant. The E-screen assay was performed on samples after solid phase extraction (SPE) to determine total estrogenic activity; the presence of estrogenic substances can be evaluated by measuring the 17-β-estradiol equivalency quantity (EEQ). Untreated samples were also assayed with an acute toxicity test ( Vibrio fischeri ) to study the correlation between toxicity and estrogenic disruption activity. Mean EEQs were 4.7 ng/L (± 2.7 ng/L) upstream and 4.4 ng/L (± 3.7 ng/L) downstream of the plant, and 11.1 ng/L (± 11.7 ng/L) in the effluent. In general the WWTP effluent had little impact on estrogenicity nor on the concentration of EDCs in the river water. The samples upstream and downstream of the plant were non-toxic or weakly toxic (0 < TU < 0.9) while the effluent was weakly toxic or toxic (0.4 < TU < 7.6). Toxicity and estrogenic activity were not correlated. At most sites, industrial mimics, such as the alkylphenols and phthalates, were present in higher concentrations than natural hormones. Although the concentrations of the detected xenoestrogens were generally higher than those of the steroids, they accounted for only a small fraction of the EEQ because of their low estrogenic potency. The EEQs resulting from the E-screen assay and those calculated from the results of chemical analyses using estradiol equivalency factors were comparable for all samples and closely correlated.

Journal

Science of the Total EnvironmentElsevier

Published: Mar 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off