Analysis of digital gene expression profiling in the gonad of male silkworms (Bombyx mori) under fluoride stress

Analysis of digital gene expression profiling in the gonad of male silkworms (Bombyx mori) under... Fluorine is an essential element, but excessive fluoride can cause serious effects on the respiratory, digestive, and reproductive systems. Fluorine has been suggested to cause reproductive toxicity in vertebrates, but its potential to reproductively affect invertebrates remains unknown. In the present study, the lepidopteran model insect Bombyx mori was used to assess the reproductive toxicity of NaF. The underlying molecular mechanisms were explored by RNA sequencing, and we investigated the testes transcriptomic profile of B. mori treated with NaF via a digital gene expression (DGE) analysis. Among 520 candidate genes, 297 and 223 were identified as significantly upregulated or downregulated, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were carried out on all genes to determine their biological functions and associated processes. The results indicated that numerous differentially expressed genes are involved in the stress response, detoxification, antibacterial, transport, oxidative phosphorylation, and ribosome. The reliability of the data was confirmed by a quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The changed Glutathione S-transferase (GST) activity and glutathione (GSH) content in the NaF-treated groups were increased and reduced respectively. This study reveals that using RNA-sequencing for the transcriptome profiling of B. mori testes can lead to better comprehension of the male reproductive toxicity effects of NaF. Furthermore, we expect that these results will aid future molecular studies on the reproductive toxicity of NaF in other species. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecotoxicology and Environmental Safety Elsevier

Analysis of digital gene expression profiling in the gonad of male silkworms (Bombyx mori) under fluoride stress

Loading next page...
 
/lp/elsevier/analysis-of-digital-gene-expression-profiling-in-the-gonad-of-male-HVX3YbDn4S
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0147-6513
eISSN
1090-2414
D.O.I.
10.1016/j.ecoenv.2018.01.028
Publisher site
See Article on Publisher Site

Abstract

Fluorine is an essential element, but excessive fluoride can cause serious effects on the respiratory, digestive, and reproductive systems. Fluorine has been suggested to cause reproductive toxicity in vertebrates, but its potential to reproductively affect invertebrates remains unknown. In the present study, the lepidopteran model insect Bombyx mori was used to assess the reproductive toxicity of NaF. The underlying molecular mechanisms were explored by RNA sequencing, and we investigated the testes transcriptomic profile of B. mori treated with NaF via a digital gene expression (DGE) analysis. Among 520 candidate genes, 297 and 223 were identified as significantly upregulated or downregulated, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were carried out on all genes to determine their biological functions and associated processes. The results indicated that numerous differentially expressed genes are involved in the stress response, detoxification, antibacterial, transport, oxidative phosphorylation, and ribosome. The reliability of the data was confirmed by a quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The changed Glutathione S-transferase (GST) activity and glutathione (GSH) content in the NaF-treated groups were increased and reduced respectively. This study reveals that using RNA-sequencing for the transcriptome profiling of B. mori testes can lead to better comprehension of the male reproductive toxicity effects of NaF. Furthermore, we expect that these results will aid future molecular studies on the reproductive toxicity of NaF in other species.

Journal

Ecotoxicology and Environmental SafetyElsevier

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off