Anaerobic digestion of 30−100-year-old boreal lake sedimented fibre from the pulp industry: Extrapolating methane production potential to a practical scale

Anaerobic digestion of 30−100-year-old boreal lake sedimented fibre from the pulp industry:... Since the 1980s, the pulp and paper industry in Finland has resulted in the accumulation of fibres in lake sediments. One such site in Lake Näsijärvi contains approximately 1.5 million m3 sedimented fibres. In this study, the methane production potential of the sedimented fibres (on average 13% total solids (TS)) was determined in batch assays. Furthermore, the methane production from solid (on average 20% TS) and liquid fractions of sedimented fibres after solid-liquid separation was studied. The sedimented fibres resulted in fast methane production and high methane yields of 250 ± 80 L CH4/kg volatile solids (VS). The main part (ca. 90%) of the methane potential was obtained from the solid fraction of the sedimented fibres. In addition, the VS removal from the total and solid sedimented fibres was high, 61–65% and 63–78%, respectively. The liquid fraction also contained a large amount of organics (on average 8.8 g COD/L), treatment of which also has to be considered. The estimations of the methane production potentials in the case area showed potential up to 40 million m3 of methane from sedimented fibres. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Research Elsevier

Anaerobic digestion of 30−100-year-old boreal lake sedimented fibre from the pulp industry: Extrapolating methane production potential to a practical scale

Loading next page...
 
/lp/elsevier/anaerobic-digestion-of-30-100-year-old-boreal-lake-sedimented-fibre-VG0RlrzYKJ
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0043-1354
D.O.I.
10.1016/j.watres.2018.01.041
Publisher site
See Article on Publisher Site

Abstract

Since the 1980s, the pulp and paper industry in Finland has resulted in the accumulation of fibres in lake sediments. One such site in Lake Näsijärvi contains approximately 1.5 million m3 sedimented fibres. In this study, the methane production potential of the sedimented fibres (on average 13% total solids (TS)) was determined in batch assays. Furthermore, the methane production from solid (on average 20% TS) and liquid fractions of sedimented fibres after solid-liquid separation was studied. The sedimented fibres resulted in fast methane production and high methane yields of 250 ± 80 L CH4/kg volatile solids (VS). The main part (ca. 90%) of the methane potential was obtained from the solid fraction of the sedimented fibres. In addition, the VS removal from the total and solid sedimented fibres was high, 61–65% and 63–78%, respectively. The liquid fraction also contained a large amount of organics (on average 8.8 g COD/L), treatment of which also has to be considered. The estimations of the methane production potentials in the case area showed potential up to 40 million m3 of methane from sedimented fibres.

Journal

Water ResearchElsevier

Published: Apr 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off