An overview of medium- to long-term predictions of global wave energy resources

An overview of medium- to long-term predictions of global wave energy resources Against a backdrop of increasing energy demand, the development of wave energy technology is a logical means of both meeting this demand and mitigating the environmental degradation associated with conventional power generation. Previous research has made considerable progress in the climatic characterization and short-term forecasting of wave energy. However, medium- to long-term predictions of wave energy resources, which are central to the development of future operating and trading strategies, remain scarce. This study provides an overview of long-term climatic trends and medium- to long-term predictions of wave energy, before discussing the focus of future predictions. Finally, a new method is proposed for predicting wave energy resources on a medium- to long-term basis that incorporates the swell index and propagation characteristics of swell energy. This model was developed with the aim of improving the precision of wave energy predictions, thereby providing a reference for the effective utilization of wave resources. The results of this study demonstrate that long-term climatic trend analysis should include not only variations in wave power density (WPD), but also long-term variability in wave energy stability, energy level occurrence, and variability in the occurrence of effective significant wave height (SWH). The medium- to long-term prediction of wave energy should also synthetically consider the above factors. We conclude that monitoring the propagation of swell energy and calculating the swell index constitutes a robust theoretical basis for predicting the WPD of mixed wave. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable and Sustainable Energy Reviews Elsevier

An overview of medium- to long-term predictions of global wave energy resources

Loading next page...
 
/lp/elsevier/an-overview-of-medium-to-long-term-predictions-of-global-wave-energy-4tihFCpd1e
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
1364-0321
D.O.I.
10.1016/j.rser.2017.05.109
Publisher site
See Article on Publisher Site

Abstract

Against a backdrop of increasing energy demand, the development of wave energy technology is a logical means of both meeting this demand and mitigating the environmental degradation associated with conventional power generation. Previous research has made considerable progress in the climatic characterization and short-term forecasting of wave energy. However, medium- to long-term predictions of wave energy resources, which are central to the development of future operating and trading strategies, remain scarce. This study provides an overview of long-term climatic trends and medium- to long-term predictions of wave energy, before discussing the focus of future predictions. Finally, a new method is proposed for predicting wave energy resources on a medium- to long-term basis that incorporates the swell index and propagation characteristics of swell energy. This model was developed with the aim of improving the precision of wave energy predictions, thereby providing a reference for the effective utilization of wave resources. The results of this study demonstrate that long-term climatic trend analysis should include not only variations in wave power density (WPD), but also long-term variability in wave energy stability, energy level occurrence, and variability in the occurrence of effective significant wave height (SWH). The medium- to long-term prediction of wave energy should also synthetically consider the above factors. We conclude that monitoring the propagation of swell energy and calculating the swell index constitutes a robust theoretical basis for predicting the WPD of mixed wave.

Journal

Renewable and Sustainable Energy ReviewsElsevier

Published: Nov 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off