An overview of electrical conductivity structures of the crust and upper mantle beneath the northwestern Pacific, the Japanese Islands, and continental East Asia

An overview of electrical conductivity structures of the crust and upper mantle beneath the... This article reviews the electrical conductivity structures of the oceanic upper mantle, subduction zones, and the mantle transition zone beneath the northwestern Pacific, the Japanese Islands, and continental East Asia, which have particularly large potential of water circulation in the global upper mantle. The oceanic upper mantle consists of an electrically resistive lid and a conductive layer underlying the lid. The depth of the top of the conductive layer is related to lithospheric cooling in the older mantle, whereas it is attributable to the difference in water distribution beneath the vicinity of the seafloor spreading-axis. The location of a lower crustal conductor in a subduction zone changes according to the subduction type. The difference can be explained by the characteristic dehydration from the subducting slab in each subduction zone and by advection from the backarc spreading. The latest one-dimensional electrical conductivity model of the mantle transition zone beneath the Pacific Ocean predicts values of 0.1–1.0 S/m. These values support a considerably dry oceanic mantle transition zone. However, one-dimensional electrical profiles may not be representative of the mantle transition zone there, since there exists a three-dimensional structure caused by the stagnant slab. Three-dimensional electromagnetic modeling should be made in future studies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Gondwana Research Elsevier

An overview of electrical conductivity structures of the crust and upper mantle beneath the northwestern Pacific, the Japanese Islands, and continental East Asia

Gondwana Research, Volume 16 (3) – Dec 1, 2009

Loading next page...
 
/lp/elsevier/an-overview-of-electrical-conductivity-structures-of-the-crust-and-iYb0RcqCqq
Publisher
Elsevier
Copyright
Copyright © 2009 International Association for Gondwana Research
ISSN
1342-937X
DOI
10.1016/j.gr.2009.04.007
Publisher site
See Article on Publisher Site

Abstract

This article reviews the electrical conductivity structures of the oceanic upper mantle, subduction zones, and the mantle transition zone beneath the northwestern Pacific, the Japanese Islands, and continental East Asia, which have particularly large potential of water circulation in the global upper mantle. The oceanic upper mantle consists of an electrically resistive lid and a conductive layer underlying the lid. The depth of the top of the conductive layer is related to lithospheric cooling in the older mantle, whereas it is attributable to the difference in water distribution beneath the vicinity of the seafloor spreading-axis. The location of a lower crustal conductor in a subduction zone changes according to the subduction type. The difference can be explained by the characteristic dehydration from the subducting slab in each subduction zone and by advection from the backarc spreading. The latest one-dimensional electrical conductivity model of the mantle transition zone beneath the Pacific Ocean predicts values of 0.1–1.0 S/m. These values support a considerably dry oceanic mantle transition zone. However, one-dimensional electrical profiles may not be representative of the mantle transition zone there, since there exists a three-dimensional structure caused by the stagnant slab. Three-dimensional electromagnetic modeling should be made in future studies.

Journal

Gondwana ResearchElsevier

Published: Dec 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off