An investigation into methods for predicting material removal energy consumption in turning

An investigation into methods for predicting material removal energy consumption in turning The wide use of machining processes has imposed a large pressure on environment due to energy consumption and related carbon emissions. The total power required in machining include power consumed by the machine before it starts cutting and power consumed to remove material from workpiece. Accurate prediction of energy consumption in machining is the basis for energy reduction. This paper investigates the prediction accuracy of the material removal power in turning processes, which could vary a lot due to different methods used for prediction. Three methods, namely the specific energy based method, cutting force based method and exponential function based method are considered together with model coefficients obtained from literature and experiments. The methods have been applied to a cylindrical turning of three types of workpiece materials (carbon steel, aluminum and ductile iron). Methods with model coefficients obtained from experiments could achieve a higher prediction accuracy than those from literature, which can be explained by the inability of the coefficients from literature to match the specific machining conditions. When the coefficients are obtained from literature, the prediction accuracy is largely dependent on the sources of coefficients and there is no definitive dominance of one approach over another. With model coefficients from experiments, the cutting force based model achieves the best accuracy, followed by the exponential function based method and specific energy based method. Furthermore, the power prediction methods can be used in process design stage to support energy consumption reduction of a machining process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cleaner Production Elsevier

An investigation into methods for predicting material removal energy consumption in turning

Loading next page...
 
/lp/elsevier/an-investigation-into-methods-for-predicting-material-removal-energy-ZfLQ0C0hIb
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0959-6526
D.O.I.
10.1016/j.jclepro.2018.05.035
Publisher site
See Article on Publisher Site

Abstract

The wide use of machining processes has imposed a large pressure on environment due to energy consumption and related carbon emissions. The total power required in machining include power consumed by the machine before it starts cutting and power consumed to remove material from workpiece. Accurate prediction of energy consumption in machining is the basis for energy reduction. This paper investigates the prediction accuracy of the material removal power in turning processes, which could vary a lot due to different methods used for prediction. Three methods, namely the specific energy based method, cutting force based method and exponential function based method are considered together with model coefficients obtained from literature and experiments. The methods have been applied to a cylindrical turning of three types of workpiece materials (carbon steel, aluminum and ductile iron). Methods with model coefficients obtained from experiments could achieve a higher prediction accuracy than those from literature, which can be explained by the inability of the coefficients from literature to match the specific machining conditions. When the coefficients are obtained from literature, the prediction accuracy is largely dependent on the sources of coefficients and there is no definitive dominance of one approach over another. With model coefficients from experiments, the cutting force based model achieves the best accuracy, followed by the exponential function based method and specific energy based method. Furthermore, the power prediction methods can be used in process design stage to support energy consumption reduction of a machining process.

Journal

Journal of Cleaner ProductionElsevier

Published: Aug 20, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off